File: servoSimuPoint2DhalfCamVelocity3.cpp

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (331 lines) | stat: -rw-r--r-- 11,066 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/****************************************************************************
 *
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Description:
 * Simulation of a 2 1/2 D visual servoing using theta U visual features.
 *
*****************************************************************************/

/*!
  \example servoSimuPoint2DhalfCamVelocity3.cpp
  Simulation of a 2 1/2 D visual servoing (x,y, t,theta u_z)
  - (x,y, t,theta u_z) features
  - eye-in-hand control law,
  - velocity computed in the camera frame,
  - no display.
*/

#include <stdio.h>
#include <stdlib.h>

#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpPoint.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/visual_features/vpFeatureThetaU.h>
#include <visp3/visual_features/vpGenericFeature.h>
#include <visp3/vs/vpServo.h>

// List of allowed command line options
#define GETOPTARGS "h"

void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv);

/*!

  Print the program options.

  \param name : Program name.
  \param badparam : Bad parameter name.

*/
void usage(const char *name, const char *badparam)
{
  fprintf(stdout, "\n\
Simulation of a 2 1/2 D visual servoing (x,y,logZ, theta U):\n\
- eye-in-hand control law,\n\
- velocity computed in the camera frame,\n\
- without display.\n\
          \n\
SYNOPSIS\n\
  %s [-h]\n",
          name);

  fprintf(stdout, "\n\
OPTIONS:                                               Default\n\
                  \n\
  -h\n\
     Print the help.\n");

  if (badparam)
    fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}

/*!

  Set the program options.

  \param argc : Command line number of parameters.
  \param argv : Array of command line parameters.
  \return false if the program has to be stopped, true otherwise.

*/
bool getOptions(int argc, const char **argv)
{
  const char *optarg_;
  int c;
  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {

    switch (c) {
    case 'h':
      usage(argv[0], NULL);
      return false;

    default:
      usage(argv[0], optarg_);
      return false;
    }
  }

  if ((c == 1) || (c == -1)) {
    // standalone param or error
    usage(argv[0], NULL);
    std::cerr << "ERROR: " << std::endl;
    std::cerr << "  Bad argument " << optarg_ << std::endl << std::endl;
    return false;
  }

  return true;
}

int main(int argc, const char **argv)
{
#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
  try {
    // Read the command line options
    if (getOptions(argc, argv) == false) {
      return EXIT_FAILURE;
    }

    std::cout << std::endl;
    std::cout << "-------------------------------------------------------" << std::endl;
    std::cout << " simulation of a 2 1/2 D visual servoing " << std::endl;
    std::cout << "-------------------------------------------------------" << std::endl;
    std::cout << std::endl;

    // In this example we will simulate a visual servoing task.
    // In simulation, we have to define the scene frane Ro and the
    // camera frame Rc.
    // The camera location is given by an homogenous matrix cMo that
    // describes the position of the scene or object frame in the camera frame.

    vpServo task;

    // sets the initial camera location
    // we give the camera location as a size 6 vector (3 translations in meter
    // and 3 rotation (theta U representation)
    vpPoseVector c_r_o(0.1, 0.2, 2, vpMath::rad(20), vpMath::rad(10), vpMath::rad(50));

    // this pose vector is then transformed in a 4x4 homogeneous matrix
    vpHomogeneousMatrix cMo(c_r_o);

    // We define a robot
    // The vpSimulatorCamera implements a simple moving that is juste defined
    // by its location cMo
    vpSimulatorCamera robot;

    // Compute the position of the object in the world frame
    vpHomogeneousMatrix wMc, wMo;
    robot.getPosition(wMc);
    wMo = wMc * cMo;

    // Now that the current camera position has been defined,
    // let us defined the defined camera location.
    // It is defined by cdMo
    // sets the desired camera location " ) ;
    vpPoseVector cd_r_o(0, 0, 1, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
    vpHomogeneousMatrix cdMo(cd_r_o);

    //----------------------------------------------------------------------
    // A 2 1/2 D visual servoing can be defined by
    // - the position of a point x,y
    // - the difference between this point depth and a desire depth
    //   modeled by log Z/Zd to be regulated to 0
    // - the rotation that the camera has to realized cdMc

    // Let us now defined the current value of these features

    // since we simulate we have to define a 3D point that will
    // forward-projected to define the current position x,y of the
    // reference point

    //------------------------------------------------------------------
    // First feature (x,y)
    //------------------------------------------------------------------
    // Let oP be this ... point,
    // a vpPoint class has three main member
    // .oP : 3D coordinates in scene frame
    // .cP : 3D coordinates in camera frame
    // .p : 2D

    //------------------------------------------------------------------
    // sets the point coordinates in the world frame
    vpPoint P(0, 0, 0);
    // computes  the P coordinates in the camera frame and its
    // 2D coordinates cP and then p
    // computes the point coordinates in the camera frame and its 2D
    // coordinates
    P.track(cMo);

    // We also defined (again by forward projection) the desired position
    // of this point according to the desired camera position
    vpPoint Pd(0, 0, 0);
    Pd.track(cdMo);

    // Nevertheless, a vpPoint is not a feature, this is just a "tracker"
    // from which the feature are built
    // a feature is juste defined by a vector s, a way to compute the
    // interaction matrix and the error, and if required a (or a vector of)
    // 3D information

    // for a point (x,y) Visp implements the vpFeaturePoint class.
    // we no defined a feature for x,y (and for (x*,y*))
    vpFeaturePoint p, pd;

    // and we initialized the vector s=(x,y) of p from the tracker P
    // Z coordinates in p is also initialized, it will be used to compute
    // the interaction matrix
    vpFeatureBuilder::create(p, P);
    vpFeatureBuilder::create(pd, Pd);

    // This visual has to be regulated to zero

    //------------------------------------------------------------------
    // 2nd feature ThetaUz and 3rd feature t
    // The thetaU feature is defined, tu represents the rotation that the
    // camera has to realized. t the translation. the complete displacement is
    // then defined by:
    //------------------------------------------------------------------
    vpHomogeneousMatrix cdMc;
    // compute the rotation that the camera has to achieve
    cdMc = cdMo * cMo.inverse();

    // from this displacement, we extract the rotation cdRc represented by
    // the angle theta and the rotation axis u
    vpFeatureThetaU tuz(vpFeatureThetaU::cdRc);
    tuz.buildFrom(cdMc);
    // And the translations
    vpFeatureTranslation t(vpFeatureTranslation::cdMc);
    t.buildFrom(cdMc);

    // This visual has to be regulated to zero

    // sets the desired rotation (always zero !)
    // since s is the rotation that the camera has to achieve

    //------------------------------------------------------------------
    // Let us now the task itself
    //------------------------------------------------------------------

    // define the task
    // - we want an eye-in-hand control law
    // - robot is controlled in the camera frame
    //  we choose to control the robot in the camera frame
    task.setServo(vpServo::EYEINHAND_CAMERA);
    // Interaction matrix is computed with the current value of s
    task.setInteractionMatrixType(vpServo::CURRENT);

    // we build the task by "stacking" the visual feature
    // previously defined
    task.addFeature(t);
    task.addFeature(p, pd);
    task.addFeature(tuz, vpFeatureThetaU::TUz); // selection of TUz

    // addFeature(X,Xd) means X should be regulated to Xd
    // addFeature(X) means that X should be regulated to 0
    // some features such as vpFeatureThetaU MUST be regulated to zero
    // (otherwise, it will results in an error at exectution level)

    // set the gain
    task.setLambda(1);

    // Display task information " ) ;
    task.print();
    //------------------------------------------------------------------
    // An now the closed loop

    unsigned int iter = 0;
    // loop
    while (iter++ < 200) {
      std::cout << "---------------------------------------------" << iter << std::endl;
      vpColVector v;

      // get the robot position
      robot.getPosition(wMc);
      // Compute the position of the object frame in the camera frame
      cMo = wMc.inverse() * wMo;

      // update the feature
      P.track(cMo);
      vpFeatureBuilder::create(p, P);

      cdMc = cdMo * cMo.inverse();
      tuz.buildFrom(cdMc);
      t.buildFrom(cdMc);

      // compute the control law: v = -lambda L^+(s-sd)
      v = task.computeControlLaw();

      // send the camera velocity to the controller
      robot.setVelocity(vpRobot::CAMERA_FRAME, v);

      std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
    }

    // Display task information
    task.print();
    // Final camera location
    std::cout << "Final camera location: \n" << cMo << std::endl;
    return EXIT_SUCCESS;
  } catch (const vpException &e) {
    std::cout << "Catch a ViSP exception: " << e << std::endl;
    return EXIT_SUCCESS;
  }
#else
  (void)argc;
  (void)argv;
  std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
  return EXIT_SUCCESS;
#endif
}