1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Simulation of a 2 1/2 D visual servoing using theta U visual features.
*
*****************************************************************************/
/*!
\example servoSimuPoint2DhalfCamVelocity3.cpp
Simulation of a 2 1/2 D visual servoing (x,y, t,theta u_z)
- (x,y, t,theta u_z) features
- eye-in-hand control law,
- velocity computed in the camera frame,
- no display.
*/
#include <stdio.h>
#include <stdlib.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpPoint.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/visual_features/vpFeatureThetaU.h>
#include <visp3/visual_features/vpGenericFeature.h>
#include <visp3/vs/vpServo.h>
// List of allowed command line options
#define GETOPTARGS "h"
void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv);
/*!
Print the program options.
\param name : Program name.
\param badparam : Bad parameter name.
*/
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Simulation of a 2 1/2 D visual servoing (x,y,logZ, theta U):\n\
- eye-in-hand control law,\n\
- velocity computed in the camera frame,\n\
- without display.\n\
\n\
SYNOPSIS\n\
%s [-h]\n",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
/*!
Set the program options.
\param argc : Command line number of parameters.
\param argv : Array of command line parameters.
\return false if the program has to be stopped, true otherwise.
*/
bool getOptions(int argc, const char **argv)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'h':
usage(argv[0], NULL);
return false;
default:
usage(argv[0], optarg_);
return false;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
try {
// Read the command line options
if (getOptions(argc, argv) == false) {
return EXIT_FAILURE;
}
std::cout << std::endl;
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << " simulation of a 2 1/2 D visual servoing " << std::endl;
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << std::endl;
// In this example we will simulate a visual servoing task.
// In simulation, we have to define the scene frane Ro and the
// camera frame Rc.
// The camera location is given by an homogenous matrix cMo that
// describes the position of the scene or object frame in the camera frame.
vpServo task;
// sets the initial camera location
// we give the camera location as a size 6 vector (3 translations in meter
// and 3 rotation (theta U representation)
vpPoseVector c_r_o(0.1, 0.2, 2, vpMath::rad(20), vpMath::rad(10), vpMath::rad(50));
// this pose vector is then transformed in a 4x4 homogeneous matrix
vpHomogeneousMatrix cMo(c_r_o);
// We define a robot
// The vpSimulatorCamera implements a simple moving that is juste defined
// by its location cMo
vpSimulatorCamera robot;
// Compute the position of the object in the world frame
vpHomogeneousMatrix wMc, wMo;
robot.getPosition(wMc);
wMo = wMc * cMo;
// Now that the current camera position has been defined,
// let us defined the defined camera location.
// It is defined by cdMo
// sets the desired camera location " ) ;
vpPoseVector cd_r_o(0, 0, 1, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
vpHomogeneousMatrix cdMo(cd_r_o);
//----------------------------------------------------------------------
// A 2 1/2 D visual servoing can be defined by
// - the position of a point x,y
// - the difference between this point depth and a desire depth
// modeled by log Z/Zd to be regulated to 0
// - the rotation that the camera has to realized cdMc
// Let us now defined the current value of these features
// since we simulate we have to define a 3D point that will
// forward-projected to define the current position x,y of the
// reference point
//------------------------------------------------------------------
// First feature (x,y)
//------------------------------------------------------------------
// Let oP be this ... point,
// a vpPoint class has three main member
// .oP : 3D coordinates in scene frame
// .cP : 3D coordinates in camera frame
// .p : 2D
//------------------------------------------------------------------
// sets the point coordinates in the world frame
vpPoint P(0, 0, 0);
// computes the P coordinates in the camera frame and its
// 2D coordinates cP and then p
// computes the point coordinates in the camera frame and its 2D
// coordinates
P.track(cMo);
// We also defined (again by forward projection) the desired position
// of this point according to the desired camera position
vpPoint Pd(0, 0, 0);
Pd.track(cdMo);
// Nevertheless, a vpPoint is not a feature, this is just a "tracker"
// from which the feature are built
// a feature is juste defined by a vector s, a way to compute the
// interaction matrix and the error, and if required a (or a vector of)
// 3D information
// for a point (x,y) Visp implements the vpFeaturePoint class.
// we no defined a feature for x,y (and for (x*,y*))
vpFeaturePoint p, pd;
// and we initialized the vector s=(x,y) of p from the tracker P
// Z coordinates in p is also initialized, it will be used to compute
// the interaction matrix
vpFeatureBuilder::create(p, P);
vpFeatureBuilder::create(pd, Pd);
// This visual has to be regulated to zero
//------------------------------------------------------------------
// 2nd feature ThetaUz and 3rd feature t
// The thetaU feature is defined, tu represents the rotation that the
// camera has to realized. t the translation. the complete displacement is
// then defined by:
//------------------------------------------------------------------
vpHomogeneousMatrix cdMc;
// compute the rotation that the camera has to achieve
cdMc = cdMo * cMo.inverse();
// from this displacement, we extract the rotation cdRc represented by
// the angle theta and the rotation axis u
vpFeatureThetaU tuz(vpFeatureThetaU::cdRc);
tuz.buildFrom(cdMc);
// And the translations
vpFeatureTranslation t(vpFeatureTranslation::cdMc);
t.buildFrom(cdMc);
// This visual has to be regulated to zero
// sets the desired rotation (always zero !)
// since s is the rotation that the camera has to achieve
//------------------------------------------------------------------
// Let us now the task itself
//------------------------------------------------------------------
// define the task
// - we want an eye-in-hand control law
// - robot is controlled in the camera frame
// we choose to control the robot in the camera frame
task.setServo(vpServo::EYEINHAND_CAMERA);
// Interaction matrix is computed with the current value of s
task.setInteractionMatrixType(vpServo::CURRENT);
// we build the task by "stacking" the visual feature
// previously defined
task.addFeature(t);
task.addFeature(p, pd);
task.addFeature(tuz, vpFeatureThetaU::TUz); // selection of TUz
// addFeature(X,Xd) means X should be regulated to Xd
// addFeature(X) means that X should be regulated to 0
// some features such as vpFeatureThetaU MUST be regulated to zero
// (otherwise, it will results in an error at exectution level)
// set the gain
task.setLambda(1);
// Display task information " ) ;
task.print();
//------------------------------------------------------------------
// An now the closed loop
unsigned int iter = 0;
// loop
while (iter++ < 200) {
std::cout << "---------------------------------------------" << iter << std::endl;
vpColVector v;
// get the robot position
robot.getPosition(wMc);
// Compute the position of the object frame in the camera frame
cMo = wMc.inverse() * wMo;
// update the feature
P.track(cMo);
vpFeatureBuilder::create(p, P);
cdMc = cdMo * cMo.inverse();
tuz.buildFrom(cdMc);
t.buildFrom(cdMc);
// compute the control law: v = -lambda L^+(s-sd)
v = task.computeControlLaw();
// send the camera velocity to the controller
robot.setVelocity(vpRobot::CAMERA_FRAME, v);
std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
}
// Display task information
task.print();
// Final camera location
std::cout << "Final camera location: \n" << cMo << std::endl;
return EXIT_SUCCESS;
} catch (const vpException &e) {
std::cout << "Catch a ViSP exception: " << e << std::endl;
return EXIT_SUCCESS;
}
#else
(void)argc;
(void)argv;
std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
return EXIT_SUCCESS;
#endif
}
|