1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Test for Afma 4 dof robot.
*
*****************************************************************************/
/*!
\file moveAfma4.cpp
\brief Example of a real robot control, the Afma4 robot (cylindrical
robot, with 4 degrees of freedom). The robot is controlled first in
position, then in velocity.
*/
/*!
\example moveAfma4.cpp
Example of a real robot control, the Afma4 robot (cylindrical robot,
with 4 degrees of freedom). The robot is controlled first in
position, then in velocity.
*/
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h>
#ifdef VISP_HAVE_AFMA4
#include <stdlib.h>
#include <unistd.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpRobotAfma4.h>
// List of allowed command line options
#define GETOPTARGS "mh"
/*!
Print the program options.
\param name : Program name.
\param badparam : Bad parameter name.
*/
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Example of a positioning control followed by a velocity control \n\
of the Afma4 robot.\n\
\n\
SYNOPSIS\n\
%s [-m] [-h]\n\
",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-m\n\
Turn off the control of the robot. This option is\n\
essentially useful for security reasons during nightly\n\
tests.\n\
\n\
-h\n\
Print the help.\n\n");
if (badparam) {
fprintf(stderr, "ERROR: \n");
fprintf(stderr, "\nBad parameter [%s]\n", badparam);
}
}
/*!
Set the program options.
\param argc : Command line number of parameters.
\param argv : Array of command line parameters.
\param control: Indicates if the control has to be applied to the robot.
\return false if the program has to be stopped, true otherwise.
*/
bool getOptions(int argc, const char **argv, bool &control)
{
const char *optarg;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg)) > 1) {
switch (c) {
case 'm':
control = false;
break;
case 'h':
usage(argv[0], NULL);
return false;
break;
default:
usage(argv[0], optarg);
return false;
break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
try {
bool control = true; // Turn on the robot control by applying positions
// and velocities to the robot.
// Read the command line options
if (getOptions(argc, argv, control) == false) {
return EXIT_FAILURE;
}
vpRobotAfma4 robot;
vpColVector qd(robot.njoint);
vpColVector q(robot.njoint);
//
// Position control in articular
//
qd[0] = vpMath::rad(10);
qd[1] = -0.1;
qd[2] = vpMath::rad(20);
qd[3] = vpMath::rad(-10);
std::cout << "Position control: in articular..." << std::endl;
std::cout << " position to reach: " << qd.t() << std::endl;
robot.setRobotState(vpRobot::STATE_POSITION_CONTROL);
if (control)
robot.setPosition(vpRobot::ARTICULAR_FRAME, qd);
sleep(1);
robot.getPosition(vpRobot::ARTICULAR_FRAME, q);
std::cout << " measured position: " << q.t();
sleep(1);
robot.setRobotState(vpRobot::STATE_VELOCITY_CONTROL);
#if 0
//
// Velocity control in articular
//
std::cout << "Velocity control: in articular..." << std::endl;
q = 0 ;
q[0] = vpMath::rad(2) ; // rotation around vertical axis
std::cout << " rotation around vertical axis: " << q[0] << std::endl;
if (control)
robot.setVelocity(vpRobot::ARTICULAR_FRAME, q) ;
sleep(5) ;
q = 0 ;
q[1] = 0.2 ; // Vertical translation
std::cout << " vertical translation: " << q[1] << std::endl;
if (control)
robot.setVelocity(vpRobot::ARTICULAR_FRAME, q) ;
sleep(5) ;
q = 0 ;
q[1] = -0.2 ; // Vertical translation
std::cout << " vertical translation: " << q[1] << std::endl;
if (control)
robot.setVelocity(vpRobot::ARTICULAR_FRAME, q) ;
sleep(5) ;
q = 0 ;
q[2] = vpMath::rad(3) ; // pan
std::cout << " pan rotation: " << q[2] << std::endl;
if (control)
robot.setVelocity(vpRobot::ARTICULAR_FRAME, q) ;
sleep(5) ;
q = 0 ;
q[3] = vpMath::rad(2) ; // tilt
std::cout << " tilt rotation: " << q[3] << std::endl;
if (control)
robot.setVelocity(vpRobot::ARTICULAR_FRAME, q) ;
sleep(5) ;
#endif
//
// Velocity control in camera frame
//
robot.setRobotState(vpRobot::STATE_VELOCITY_CONTROL);
std::cout << "Velocity control: in camera frame..." << std::endl;
q.resize(6);
q = 0.0;
q[0] = vpMath::rad(2); // rotation around vertical axis
std::cout << " rx rotation: " << q[0] << std::endl;
if (control)
robot.setVelocity(vpRobot::CAMERA_FRAME, q);
sleep(5);
q.resize(6);
q = 0.0;
q[1] = vpMath::rad(2); // rotation around vertical axis
std::cout << " ry rotation: " << q[1] << std::endl;
if (control)
robot.setVelocity(vpRobot::CAMERA_FRAME, q);
sleep(5);
std::cout << "The end" << std::endl;
return EXIT_SUCCESS;
} catch (const vpException &e) {
std::cout << "Catch a ViSP exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have an afma4 robot connected to your computer..." << std::endl;
return EXIT_SUCCESS;
}
#endif
|