File: servoUniversalRobotsIBVS.cpp

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (491 lines) | stat: -rw-r--r-- 17,516 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/****************************************************************************
 *
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Description:
 *   tests the control law
 *   eye-in-hand control
 *   velocity computed in the camera frame
 *
*****************************************************************************/
/*!
  \example servoUniversalRobotsIBVS.cpp

  Example of eye-in-hand image-based control law. We control here a real robot
  from Universal Robots. The velocity is computed in the camera frame. Visual features
  are the image coordinates of 4 points corresponding to the corners of an AprilTag.

  The device used to acquire images is a Realsense D435 device.

  Camera extrinsic (eMc) parameters are set by default to a value that will not match
  Your configuration. Use --eMc command line option to read the values from a file.
  This file could be obtained following extrinsic camera calibration tutorial:
  https://visp-doc.inria.fr/doxygen/visp-daily/tutorial-calibration-extrinsic.html

  Camera intrinsic parameters are retrieved from the Realsense SDK.

  The target is an AprilTag that is by default 12cm large. To print your own tag, see
  https://visp-doc.inria.fr/doxygen/visp-daily/tutorial-detection-apriltag.html
  You can specify the size of your tag using --tag_size command line option.

*/

#include <iostream>

#include <visp3/core/vpCameraParameters.h>
#include <visp3/detection/vpDetectorAprilTag.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpPlot.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/robot/vpRobotUniversalRobots.h>
#include <visp3/sensor/vpRealSense2.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>

#if defined(VISP_HAVE_REALSENSE2) && (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11) &&                                    \
    (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI)) && defined(VISP_HAVE_UR_RTDE)

void display_point_trajectory(const vpImage<unsigned char> &I, const std::vector<vpImagePoint> &vip,
                              std::vector<vpImagePoint> *traj_vip)
{
  for (size_t i = 0; i < vip.size(); i++) {
    if (traj_vip[i].size()) {
      // Add the point only if distance with the previous > 1 pixel
      if (vpImagePoint::distance(vip[i], traj_vip[i].back()) > 1.) {
        traj_vip[i].push_back(vip[i]);
      }
    } else {
      traj_vip[i].push_back(vip[i]);
    }
  }
  for (size_t i = 0; i < vip.size(); i++) {
    for (size_t j = 1; j < traj_vip[i].size(); j++) {
      vpDisplay::displayLine(I, traj_vip[i][j - 1], traj_vip[i][j], vpColor::green, 2);
    }
  }
}

int main(int argc, char **argv)
{
  double opt_tagSize = 0.120;
  std::string opt_robot_ip = "192.168.0.100";
  std::string opt_eMc_filename = "";
  bool display_tag = true;
  int opt_quad_decimate = 2;
  bool opt_verbose = false;
  bool opt_plot = false;
  bool opt_adaptive_gain = false;
  bool opt_task_sequencing = false;
  double convergence_threshold = 0.00005;

  for (int i = 1; i < argc; i++) {
    if (std::string(argv[i]) == "--tag_size" && i + 1 < argc) {
      opt_tagSize = std::stod(argv[i + 1]);
    } else if (std::string(argv[i]) == "--ip" && i + 1 < argc) {
      opt_robot_ip = std::string(argv[i + 1]);
    } else if (std::string(argv[i]) == "--eMc" && i + 1 < argc) {
      opt_eMc_filename = std::string(argv[i + 1]);
    } else if (std::string(argv[i]) == "--verbose") {
      opt_verbose = true;
    } else if (std::string(argv[i]) == "--plot") {
      opt_plot = true;
    } else if (std::string(argv[i]) == "--adaptive_gain") {
      opt_adaptive_gain = true;
    } else if (std::string(argv[i]) == "--task_sequencing") {
      opt_task_sequencing = true;
    } else if (std::string(argv[i]) == "--quad_decimate" && i + 1 < argc) {
      opt_quad_decimate = std::stoi(argv[i + 1]);
    } else if (std::string(argv[i]) == "--no-convergence-threshold") {
      convergence_threshold = 0.;
    } else if (std::string(argv[i]) == "--help" || std::string(argv[i]) == "-h") {
      std::cout
          << argv[0] << " [--ip <default " << opt_robot_ip << ">] [--tag_size <marker size in meter; default "
          << opt_tagSize << ">] [--eMc <eMc extrinsic file>] "
          << "[--quad_decimate <decimation; default " << opt_quad_decimate
          << ">] [--adaptive_gain] [--plot] [--task_sequencing] [--no-convergence-threshold] [--verbose] [--help] [-h]"
          << "\n";
      return EXIT_SUCCESS;
    }
  }

  vpRobotUniversalRobots robot;

  try {
    robot.connect(opt_robot_ip);

    std::cout << "WARNING: This example will move the robot! "
              << "Please make sure to have the user stop button at hand!" << std::endl
              << "Press Enter to continue..." << std::endl;
    std::cin.ignore();

    /*
     * Move to a safe position
     */
    vpColVector q(6, 0);
    q[0] = -vpMath::rad(16);
    q[1] = -vpMath::rad(120);
    q[2] = vpMath::rad(120);
    q[3] = -vpMath::rad(90);
    q[4] = -vpMath::rad(90);
    q[5] = 0;
    std::cout << "Move to joint position: " << q.t() << std::endl;
    robot.setRobotState(vpRobot::STATE_POSITION_CONTROL);
    robot.setPosition(vpRobot::JOINT_STATE, q);

    vpRealSense2 rs;
    rs2::config config;
    unsigned int width = 640, height = 480;
    config.enable_stream(RS2_STREAM_COLOR, 640, 480, RS2_FORMAT_RGBA8, 30);
    config.enable_stream(RS2_STREAM_DEPTH, 640, 480, RS2_FORMAT_Z16, 30);
    config.enable_stream(RS2_STREAM_INFRARED, 640, 480, RS2_FORMAT_Y8, 30);
    rs.open(config);

    // Get camera extrinsics
    vpPoseVector ePc;
    // Set camera extrinsics default values
    ePc[0] = -0.0312543;
    ePc[1] = -0.0584638;
    ePc[2] = 0.0309834;
    ePc[3] = -0.00506562;
    ePc[4] = -0.00293325;
    ePc[5] = 0.0117901;

    // If provided, read camera extrinsics from --eMc <file>
    if (!opt_eMc_filename.empty()) {
      ePc.loadYAML(opt_eMc_filename, ePc);
    } else {
      std::cout << "Warning, opt_eMc_filename is empty! Use hard coded values."
                << "\n";
    }
    vpHomogeneousMatrix eMc(ePc);
    std::cout << "eMc:\n" << eMc << "\n";

    // Get camera intrinsics
    vpCameraParameters cam =
        rs.getCameraParameters(RS2_STREAM_COLOR, vpCameraParameters::perspectiveProjWithDistortion);
    std::cout << "cam:\n" << cam << "\n";

    vpImage<unsigned char> I(height, width);

#if defined(VISP_HAVE_X11)
    vpDisplayX dc(I, 10, 10, "Color image");
#elif defined(VISP_HAVE_GDI)
    vpDisplayGDI dc(I, 10, 10, "Color image");
#endif

    vpDetectorAprilTag::vpAprilTagFamily tagFamily = vpDetectorAprilTag::TAG_36h11;
    vpDetectorAprilTag::vpPoseEstimationMethod poseEstimationMethod = vpDetectorAprilTag::HOMOGRAPHY_VIRTUAL_VS;
    // vpDetectorAprilTag::vpPoseEstimationMethod poseEstimationMethod = vpDetectorAprilTag::BEST_RESIDUAL_VIRTUAL_VS;
    vpDetectorAprilTag detector(tagFamily);
    detector.setAprilTagPoseEstimationMethod(poseEstimationMethod);
    detector.setDisplayTag(display_tag);
    detector.setAprilTagQuadDecimate(opt_quad_decimate);

    // Servo
    vpHomogeneousMatrix cdMc, cMo, oMo;

    // Desired pose used to compute the desired features
    vpHomogeneousMatrix cdMo(vpTranslationVector(0, 0, opt_tagSize * 3), // 3 times tag with along camera z axis
                             vpRotationMatrix({1, 0, 0, 0, -1, 0, 0, 0, -1}));

    // Create visual features
    std::vector<vpFeaturePoint> p(4), pd(4); // We use 4 points

    // Define 4 3D points corresponding to the CAD model of the Apriltag
    std::vector<vpPoint> point(4);
    point[0].setWorldCoordinates(-opt_tagSize / 2., -opt_tagSize / 2., 0);
    point[1].setWorldCoordinates(opt_tagSize / 2., -opt_tagSize / 2., 0);
    point[2].setWorldCoordinates(opt_tagSize / 2., opt_tagSize / 2., 0);
    point[3].setWorldCoordinates(-opt_tagSize / 2., opt_tagSize / 2., 0);

    vpServo task;
    // Add the 4 visual feature points
    for (size_t i = 0; i < p.size(); i++) {
      task.addFeature(p[i], pd[i]);
    }
    task.setServo(vpServo::EYEINHAND_CAMERA);
    task.setInteractionMatrixType(vpServo::CURRENT);

    if (opt_adaptive_gain) {
      vpAdaptiveGain lambda(1.5, 0.4, 30); // lambda(0)=4, lambda(oo)=0.4 and lambda'(0)=30
      task.setLambda(lambda);
    } else {
      task.setLambda(0.5);
    }

    vpPlot *plotter = nullptr;
    int iter_plot = 0;

    if (opt_plot) {
      plotter = new vpPlot(2, static_cast<int>(250 * 2), 500, static_cast<int>(I.getWidth()) + 80, 10,
                           "Real time curves plotter");
      plotter->setTitle(0, "Visual features error");
      plotter->setTitle(1, "Camera velocities");
      plotter->initGraph(0, 8);
      plotter->initGraph(1, 6);
      plotter->setLegend(0, 0, "error_feat_p1_x");
      plotter->setLegend(0, 1, "error_feat_p1_y");
      plotter->setLegend(0, 2, "error_feat_p2_x");
      plotter->setLegend(0, 3, "error_feat_p2_y");
      plotter->setLegend(0, 4, "error_feat_p3_x");
      plotter->setLegend(0, 5, "error_feat_p3_y");
      plotter->setLegend(0, 6, "error_feat_p4_x");
      plotter->setLegend(0, 7, "error_feat_p4_y");
      plotter->setLegend(1, 0, "vc_x");
      plotter->setLegend(1, 1, "vc_y");
      plotter->setLegend(1, 2, "vc_z");
      plotter->setLegend(1, 3, "wc_x");
      plotter->setLegend(1, 4, "wc_y");
      plotter->setLegend(1, 5, "wc_z");
    }

    bool final_quit = false;
    bool has_converged = false;
    bool send_velocities = false;
    bool servo_started = false;
    std::vector<vpImagePoint> *traj_corners = nullptr; // To memorize point trajectory

    static double t_init_servo = vpTime::measureTimeMs();

    robot.set_eMc(eMc); // Set location of the camera wrt end-effector frame
    robot.setRobotState(vpRobot::STATE_VELOCITY_CONTROL);

    while (!has_converged && !final_quit) {
      double t_start = vpTime::measureTimeMs();

      rs.acquire(I);

      vpDisplay::display(I);

      std::vector<vpHomogeneousMatrix> cMo_vec;
      detector.detect(I, opt_tagSize, cam, cMo_vec);

      {
        std::stringstream ss;
        ss << "Left click to " << (send_velocities ? "stop the robot" : "servo the robot") << ", right click to quit.";
        vpDisplay::displayText(I, 20, 20, ss.str(), vpColor::red);
      }

      vpColVector v_c(6);

      // Only one tag is detected
      if (cMo_vec.size() == 1) {
        cMo = cMo_vec[0];

        static bool first_time = true;
        if (first_time) {
          // Introduce security wrt tag positioning in order to avoid PI rotation
          std::vector<vpHomogeneousMatrix> v_oMo(2), v_cdMc(2);
          v_oMo[1].buildFrom(0, 0, 0, 0, 0, M_PI);
          for (size_t i = 0; i < 2; i++) {
            v_cdMc[i] = cdMo * v_oMo[i] * cMo.inverse();
          }
          if (std::fabs(v_cdMc[0].getThetaUVector().getTheta()) < std::fabs(v_cdMc[1].getThetaUVector().getTheta())) {
            oMo = v_oMo[0];
          } else {
            std::cout << "Desired frame modified to avoid PI rotation of the camera" << std::endl;
            oMo = v_oMo[1]; // Introduce PI rotation
          }

          // Compute the desired position of the features from the desired pose
          for (size_t i = 0; i < point.size(); i++) {
            vpColVector cP, p_;
            point[i].changeFrame(cdMo * oMo, cP);
            point[i].projection(cP, p_);

            pd[i].set_x(p_[0]);
            pd[i].set_y(p_[1]);
            pd[i].set_Z(cP[2]);
          }
        }

        // Get tag corners
        std::vector<vpImagePoint> corners = detector.getPolygon(0);

        // Update visual features
        for (size_t i = 0; i < corners.size(); i++) {
          // Update the point feature from the tag corners location
          vpFeatureBuilder::create(p[i], cam, corners[i]);
          // Set the feature Z coordinate from the pose
          vpColVector cP;
          point[i].changeFrame(cMo, cP);

          p[i].set_Z(cP[2]);
        }

        if (opt_task_sequencing) {
          if (!servo_started) {
            if (send_velocities) {
              servo_started = true;
            }
            t_init_servo = vpTime::measureTimeMs();
          }
          v_c = task.computeControlLaw((vpTime::measureTimeMs() - t_init_servo) / 1000.);
        } else {
          v_c = task.computeControlLaw();
        }

        // Display the current and desired feature points in the image display
        vpServoDisplay::display(task, cam, I);
        for (size_t i = 0; i < corners.size(); i++) {
          std::stringstream ss;
          ss << i;
          // Display current point indexes
          vpDisplay::displayText(I, corners[i] + vpImagePoint(15, 15), ss.str(), vpColor::red);
          // Display desired point indexes
          vpImagePoint ip;
          vpMeterPixelConversion::convertPoint(cam, pd[i].get_x(), pd[i].get_y(), ip);
          vpDisplay::displayText(I, ip + vpImagePoint(15, 15), ss.str(), vpColor::red);
        }
        if (first_time) {
          traj_corners = new std::vector<vpImagePoint>[corners.size()];
        }
        // Display the trajectory of the points used as features
        display_point_trajectory(I, corners, traj_corners);

        if (opt_plot) {
          plotter->plot(0, iter_plot, task.getError());
          plotter->plot(1, iter_plot, v_c);
          iter_plot++;
        }

        if (opt_verbose) {
          std::cout << "v_c: " << v_c.t() << std::endl;
        }

        double error = task.getError().sumSquare();
        std::stringstream ss;
        ss << "error: " << error;
        vpDisplay::displayText(I, 20, static_cast<int>(I.getWidth()) - 150, ss.str(), vpColor::red);

        if (opt_verbose)
          std::cout << "error: " << error << std::endl;

        if (error < convergence_threshold) {
          has_converged = true;
          std::cout << "Servo task has converged"
                    << "\n";
          vpDisplay::displayText(I, 100, 20, "Servo task has converged", vpColor::red);
        }
        if (first_time) {
          first_time = false;
        }
      } // end if (cMo_vec.size() == 1)
      else {
        v_c = 0;
      }

      if (!send_velocities) {
        v_c = 0;
      }

      // Send to the robot
      robot.setVelocity(vpRobot::CAMERA_FRAME, v_c);

      {
        std::stringstream ss;
        ss << "Loop time: " << vpTime::measureTimeMs() - t_start << " ms";
        vpDisplay::displayText(I, 40, 20, ss.str(), vpColor::red);
      }
      vpDisplay::flush(I);

      vpMouseButton::vpMouseButtonType button;
      if (vpDisplay::getClick(I, button, false)) {
        switch (button) {
        case vpMouseButton::button1:
          send_velocities = !send_velocities;
          break;

        case vpMouseButton::button3:
          final_quit = true;
          v_c = 0;
          break;

        default:
          break;
        }
      }
    }
    std::cout << "Stop the robot " << std::endl;
    robot.setRobotState(vpRobot::STATE_STOP);

    if (opt_plot && plotter != nullptr) {
      delete plotter;
      plotter = nullptr;
    }

    if (!final_quit) {
      while (!final_quit) {
        rs.acquire(I);
        vpDisplay::display(I);

        vpDisplay::displayText(I, 20, 20, "Click to quit the program.", vpColor::red);
        vpDisplay::displayText(I, 40, 20, "Visual servo converged.", vpColor::red);

        if (vpDisplay::getClick(I, false)) {
          final_quit = true;
        }

        vpDisplay::flush(I);
      }
    }
    if (traj_corners) {
      delete[] traj_corners;
    }
  } catch (const vpException &e) {
    std::cout << "ViSP exception: " << e.what() << std::endl;
    std::cout << "Stop the robot " << std::endl;
    robot.setRobotState(vpRobot::STATE_STOP);
    return EXIT_FAILURE;
  } catch (const std::exception &e) {
    std::cout << "ur_rtde exception: " << e.what() << std::endl;
    return EXIT_FAILURE;
  }

  return EXIT_SUCCESS;
}
#else
int main()
{
#if !defined(VISP_HAVE_REALSENSE2)
  std::cout << "Install librealsense-2.x" << std::endl;
#endif
#if (VISP_CXX_STANDARD < VISP_CXX_STANDARD_11)
  std::cout << "Build ViSP with c++11 or higher compiler flag (cmake -DUSE_CXX_STANDARD=11)." << std::endl;
#endif
#if !defined(VISP_HAVE_UR_RTDE)
  std::cout << "ViSP is not build with libur_rtde 3rd party used to control a robot from Universal Robots..."
            << std::endl;
#endif
  return EXIT_SUCCESS;
}
#endif