1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* tests the control law
* eye-in-hand control
* velocity computed in the camera frame
*
*****************************************************************************/
/*!
\example servoUniversalRobotsIBVS.cpp
Example of eye-in-hand image-based control law. We control here a real robot
from Universal Robots. The velocity is computed in the camera frame. Visual features
are the image coordinates of 4 points corresponding to the corners of an AprilTag.
The device used to acquire images is a Realsense D435 device.
Camera extrinsic (eMc) parameters are set by default to a value that will not match
Your configuration. Use --eMc command line option to read the values from a file.
This file could be obtained following extrinsic camera calibration tutorial:
https://visp-doc.inria.fr/doxygen/visp-daily/tutorial-calibration-extrinsic.html
Camera intrinsic parameters are retrieved from the Realsense SDK.
The target is an AprilTag that is by default 12cm large. To print your own tag, see
https://visp-doc.inria.fr/doxygen/visp-daily/tutorial-detection-apriltag.html
You can specify the size of your tag using --tag_size command line option.
*/
#include <iostream>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/detection/vpDetectorAprilTag.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpPlot.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/robot/vpRobotUniversalRobots.h>
#include <visp3/sensor/vpRealSense2.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
#if defined(VISP_HAVE_REALSENSE2) && (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11) && \
(defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI)) && defined(VISP_HAVE_UR_RTDE)
void display_point_trajectory(const vpImage<unsigned char> &I, const std::vector<vpImagePoint> &vip,
std::vector<vpImagePoint> *traj_vip)
{
for (size_t i = 0; i < vip.size(); i++) {
if (traj_vip[i].size()) {
// Add the point only if distance with the previous > 1 pixel
if (vpImagePoint::distance(vip[i], traj_vip[i].back()) > 1.) {
traj_vip[i].push_back(vip[i]);
}
} else {
traj_vip[i].push_back(vip[i]);
}
}
for (size_t i = 0; i < vip.size(); i++) {
for (size_t j = 1; j < traj_vip[i].size(); j++) {
vpDisplay::displayLine(I, traj_vip[i][j - 1], traj_vip[i][j], vpColor::green, 2);
}
}
}
int main(int argc, char **argv)
{
double opt_tagSize = 0.120;
std::string opt_robot_ip = "192.168.0.100";
std::string opt_eMc_filename = "";
bool display_tag = true;
int opt_quad_decimate = 2;
bool opt_verbose = false;
bool opt_plot = false;
bool opt_adaptive_gain = false;
bool opt_task_sequencing = false;
double convergence_threshold = 0.00005;
for (int i = 1; i < argc; i++) {
if (std::string(argv[i]) == "--tag_size" && i + 1 < argc) {
opt_tagSize = std::stod(argv[i + 1]);
} else if (std::string(argv[i]) == "--ip" && i + 1 < argc) {
opt_robot_ip = std::string(argv[i + 1]);
} else if (std::string(argv[i]) == "--eMc" && i + 1 < argc) {
opt_eMc_filename = std::string(argv[i + 1]);
} else if (std::string(argv[i]) == "--verbose") {
opt_verbose = true;
} else if (std::string(argv[i]) == "--plot") {
opt_plot = true;
} else if (std::string(argv[i]) == "--adaptive_gain") {
opt_adaptive_gain = true;
} else if (std::string(argv[i]) == "--task_sequencing") {
opt_task_sequencing = true;
} else if (std::string(argv[i]) == "--quad_decimate" && i + 1 < argc) {
opt_quad_decimate = std::stoi(argv[i + 1]);
} else if (std::string(argv[i]) == "--no-convergence-threshold") {
convergence_threshold = 0.;
} else if (std::string(argv[i]) == "--help" || std::string(argv[i]) == "-h") {
std::cout
<< argv[0] << " [--ip <default " << opt_robot_ip << ">] [--tag_size <marker size in meter; default "
<< opt_tagSize << ">] [--eMc <eMc extrinsic file>] "
<< "[--quad_decimate <decimation; default " << opt_quad_decimate
<< ">] [--adaptive_gain] [--plot] [--task_sequencing] [--no-convergence-threshold] [--verbose] [--help] [-h]"
<< "\n";
return EXIT_SUCCESS;
}
}
vpRobotUniversalRobots robot;
try {
robot.connect(opt_robot_ip);
std::cout << "WARNING: This example will move the robot! "
<< "Please make sure to have the user stop button at hand!" << std::endl
<< "Press Enter to continue..." << std::endl;
std::cin.ignore();
/*
* Move to a safe position
*/
vpColVector q(6, 0);
q[0] = -vpMath::rad(16);
q[1] = -vpMath::rad(120);
q[2] = vpMath::rad(120);
q[3] = -vpMath::rad(90);
q[4] = -vpMath::rad(90);
q[5] = 0;
std::cout << "Move to joint position: " << q.t() << std::endl;
robot.setRobotState(vpRobot::STATE_POSITION_CONTROL);
robot.setPosition(vpRobot::JOINT_STATE, q);
vpRealSense2 rs;
rs2::config config;
unsigned int width = 640, height = 480;
config.enable_stream(RS2_STREAM_COLOR, 640, 480, RS2_FORMAT_RGBA8, 30);
config.enable_stream(RS2_STREAM_DEPTH, 640, 480, RS2_FORMAT_Z16, 30);
config.enable_stream(RS2_STREAM_INFRARED, 640, 480, RS2_FORMAT_Y8, 30);
rs.open(config);
// Get camera extrinsics
vpPoseVector ePc;
// Set camera extrinsics default values
ePc[0] = -0.0312543;
ePc[1] = -0.0584638;
ePc[2] = 0.0309834;
ePc[3] = -0.00506562;
ePc[4] = -0.00293325;
ePc[5] = 0.0117901;
// If provided, read camera extrinsics from --eMc <file>
if (!opt_eMc_filename.empty()) {
ePc.loadYAML(opt_eMc_filename, ePc);
} else {
std::cout << "Warning, opt_eMc_filename is empty! Use hard coded values."
<< "\n";
}
vpHomogeneousMatrix eMc(ePc);
std::cout << "eMc:\n" << eMc << "\n";
// Get camera intrinsics
vpCameraParameters cam =
rs.getCameraParameters(RS2_STREAM_COLOR, vpCameraParameters::perspectiveProjWithDistortion);
std::cout << "cam:\n" << cam << "\n";
vpImage<unsigned char> I(height, width);
#if defined(VISP_HAVE_X11)
vpDisplayX dc(I, 10, 10, "Color image");
#elif defined(VISP_HAVE_GDI)
vpDisplayGDI dc(I, 10, 10, "Color image");
#endif
vpDetectorAprilTag::vpAprilTagFamily tagFamily = vpDetectorAprilTag::TAG_36h11;
vpDetectorAprilTag::vpPoseEstimationMethod poseEstimationMethod = vpDetectorAprilTag::HOMOGRAPHY_VIRTUAL_VS;
// vpDetectorAprilTag::vpPoseEstimationMethod poseEstimationMethod = vpDetectorAprilTag::BEST_RESIDUAL_VIRTUAL_VS;
vpDetectorAprilTag detector(tagFamily);
detector.setAprilTagPoseEstimationMethod(poseEstimationMethod);
detector.setDisplayTag(display_tag);
detector.setAprilTagQuadDecimate(opt_quad_decimate);
// Servo
vpHomogeneousMatrix cdMc, cMo, oMo;
// Desired pose used to compute the desired features
vpHomogeneousMatrix cdMo(vpTranslationVector(0, 0, opt_tagSize * 3), // 3 times tag with along camera z axis
vpRotationMatrix({1, 0, 0, 0, -1, 0, 0, 0, -1}));
// Create visual features
std::vector<vpFeaturePoint> p(4), pd(4); // We use 4 points
// Define 4 3D points corresponding to the CAD model of the Apriltag
std::vector<vpPoint> point(4);
point[0].setWorldCoordinates(-opt_tagSize / 2., -opt_tagSize / 2., 0);
point[1].setWorldCoordinates(opt_tagSize / 2., -opt_tagSize / 2., 0);
point[2].setWorldCoordinates(opt_tagSize / 2., opt_tagSize / 2., 0);
point[3].setWorldCoordinates(-opt_tagSize / 2., opt_tagSize / 2., 0);
vpServo task;
// Add the 4 visual feature points
for (size_t i = 0; i < p.size(); i++) {
task.addFeature(p[i], pd[i]);
}
task.setServo(vpServo::EYEINHAND_CAMERA);
task.setInteractionMatrixType(vpServo::CURRENT);
if (opt_adaptive_gain) {
vpAdaptiveGain lambda(1.5, 0.4, 30); // lambda(0)=4, lambda(oo)=0.4 and lambda'(0)=30
task.setLambda(lambda);
} else {
task.setLambda(0.5);
}
vpPlot *plotter = nullptr;
int iter_plot = 0;
if (opt_plot) {
plotter = new vpPlot(2, static_cast<int>(250 * 2), 500, static_cast<int>(I.getWidth()) + 80, 10,
"Real time curves plotter");
plotter->setTitle(0, "Visual features error");
plotter->setTitle(1, "Camera velocities");
plotter->initGraph(0, 8);
plotter->initGraph(1, 6);
plotter->setLegend(0, 0, "error_feat_p1_x");
plotter->setLegend(0, 1, "error_feat_p1_y");
plotter->setLegend(0, 2, "error_feat_p2_x");
plotter->setLegend(0, 3, "error_feat_p2_y");
plotter->setLegend(0, 4, "error_feat_p3_x");
plotter->setLegend(0, 5, "error_feat_p3_y");
plotter->setLegend(0, 6, "error_feat_p4_x");
plotter->setLegend(0, 7, "error_feat_p4_y");
plotter->setLegend(1, 0, "vc_x");
plotter->setLegend(1, 1, "vc_y");
plotter->setLegend(1, 2, "vc_z");
plotter->setLegend(1, 3, "wc_x");
plotter->setLegend(1, 4, "wc_y");
plotter->setLegend(1, 5, "wc_z");
}
bool final_quit = false;
bool has_converged = false;
bool send_velocities = false;
bool servo_started = false;
std::vector<vpImagePoint> *traj_corners = nullptr; // To memorize point trajectory
static double t_init_servo = vpTime::measureTimeMs();
robot.set_eMc(eMc); // Set location of the camera wrt end-effector frame
robot.setRobotState(vpRobot::STATE_VELOCITY_CONTROL);
while (!has_converged && !final_quit) {
double t_start = vpTime::measureTimeMs();
rs.acquire(I);
vpDisplay::display(I);
std::vector<vpHomogeneousMatrix> cMo_vec;
detector.detect(I, opt_tagSize, cam, cMo_vec);
{
std::stringstream ss;
ss << "Left click to " << (send_velocities ? "stop the robot" : "servo the robot") << ", right click to quit.";
vpDisplay::displayText(I, 20, 20, ss.str(), vpColor::red);
}
vpColVector v_c(6);
// Only one tag is detected
if (cMo_vec.size() == 1) {
cMo = cMo_vec[0];
static bool first_time = true;
if (first_time) {
// Introduce security wrt tag positioning in order to avoid PI rotation
std::vector<vpHomogeneousMatrix> v_oMo(2), v_cdMc(2);
v_oMo[1].buildFrom(0, 0, 0, 0, 0, M_PI);
for (size_t i = 0; i < 2; i++) {
v_cdMc[i] = cdMo * v_oMo[i] * cMo.inverse();
}
if (std::fabs(v_cdMc[0].getThetaUVector().getTheta()) < std::fabs(v_cdMc[1].getThetaUVector().getTheta())) {
oMo = v_oMo[0];
} else {
std::cout << "Desired frame modified to avoid PI rotation of the camera" << std::endl;
oMo = v_oMo[1]; // Introduce PI rotation
}
// Compute the desired position of the features from the desired pose
for (size_t i = 0; i < point.size(); i++) {
vpColVector cP, p_;
point[i].changeFrame(cdMo * oMo, cP);
point[i].projection(cP, p_);
pd[i].set_x(p_[0]);
pd[i].set_y(p_[1]);
pd[i].set_Z(cP[2]);
}
}
// Get tag corners
std::vector<vpImagePoint> corners = detector.getPolygon(0);
// Update visual features
for (size_t i = 0; i < corners.size(); i++) {
// Update the point feature from the tag corners location
vpFeatureBuilder::create(p[i], cam, corners[i]);
// Set the feature Z coordinate from the pose
vpColVector cP;
point[i].changeFrame(cMo, cP);
p[i].set_Z(cP[2]);
}
if (opt_task_sequencing) {
if (!servo_started) {
if (send_velocities) {
servo_started = true;
}
t_init_servo = vpTime::measureTimeMs();
}
v_c = task.computeControlLaw((vpTime::measureTimeMs() - t_init_servo) / 1000.);
} else {
v_c = task.computeControlLaw();
}
// Display the current and desired feature points in the image display
vpServoDisplay::display(task, cam, I);
for (size_t i = 0; i < corners.size(); i++) {
std::stringstream ss;
ss << i;
// Display current point indexes
vpDisplay::displayText(I, corners[i] + vpImagePoint(15, 15), ss.str(), vpColor::red);
// Display desired point indexes
vpImagePoint ip;
vpMeterPixelConversion::convertPoint(cam, pd[i].get_x(), pd[i].get_y(), ip);
vpDisplay::displayText(I, ip + vpImagePoint(15, 15), ss.str(), vpColor::red);
}
if (first_time) {
traj_corners = new std::vector<vpImagePoint>[corners.size()];
}
// Display the trajectory of the points used as features
display_point_trajectory(I, corners, traj_corners);
if (opt_plot) {
plotter->plot(0, iter_plot, task.getError());
plotter->plot(1, iter_plot, v_c);
iter_plot++;
}
if (opt_verbose) {
std::cout << "v_c: " << v_c.t() << std::endl;
}
double error = task.getError().sumSquare();
std::stringstream ss;
ss << "error: " << error;
vpDisplay::displayText(I, 20, static_cast<int>(I.getWidth()) - 150, ss.str(), vpColor::red);
if (opt_verbose)
std::cout << "error: " << error << std::endl;
if (error < convergence_threshold) {
has_converged = true;
std::cout << "Servo task has converged"
<< "\n";
vpDisplay::displayText(I, 100, 20, "Servo task has converged", vpColor::red);
}
if (first_time) {
first_time = false;
}
} // end if (cMo_vec.size() == 1)
else {
v_c = 0;
}
if (!send_velocities) {
v_c = 0;
}
// Send to the robot
robot.setVelocity(vpRobot::CAMERA_FRAME, v_c);
{
std::stringstream ss;
ss << "Loop time: " << vpTime::measureTimeMs() - t_start << " ms";
vpDisplay::displayText(I, 40, 20, ss.str(), vpColor::red);
}
vpDisplay::flush(I);
vpMouseButton::vpMouseButtonType button;
if (vpDisplay::getClick(I, button, false)) {
switch (button) {
case vpMouseButton::button1:
send_velocities = !send_velocities;
break;
case vpMouseButton::button3:
final_quit = true;
v_c = 0;
break;
default:
break;
}
}
}
std::cout << "Stop the robot " << std::endl;
robot.setRobotState(vpRobot::STATE_STOP);
if (opt_plot && plotter != nullptr) {
delete plotter;
plotter = nullptr;
}
if (!final_quit) {
while (!final_quit) {
rs.acquire(I);
vpDisplay::display(I);
vpDisplay::displayText(I, 20, 20, "Click to quit the program.", vpColor::red);
vpDisplay::displayText(I, 40, 20, "Visual servo converged.", vpColor::red);
if (vpDisplay::getClick(I, false)) {
final_quit = true;
}
vpDisplay::flush(I);
}
}
if (traj_corners) {
delete[] traj_corners;
}
} catch (const vpException &e) {
std::cout << "ViSP exception: " << e.what() << std::endl;
std::cout << "Stop the robot " << std::endl;
robot.setRobotState(vpRobot::STATE_STOP);
return EXIT_FAILURE;
} catch (const std::exception &e) {
std::cout << "ur_rtde exception: " << e.what() << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
#else
int main()
{
#if !defined(VISP_HAVE_REALSENSE2)
std::cout << "Install librealsense-2.x" << std::endl;
#endif
#if (VISP_CXX_STANDARD < VISP_CXX_STANDARD_11)
std::cout << "Build ViSP with c++11 or higher compiler flag (cmake -DUSE_CXX_STANDARD=11)." << std::endl;
#endif
#if !defined(VISP_HAVE_UR_RTDE)
std::cout << "ViSP is not build with libur_rtde 3rd party used to control a robot from Universal Robots..."
<< std::endl;
#endif
return EXIT_SUCCESS;
}
#endif
|