File: servoViper850FourPointsKinect.cpp

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (389 lines) | stat: -rw-r--r-- 13,401 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/****************************************************************************
 *
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Description:
 *   tests the control law
 *   eye-in-hand control
 *   velocity computed in the camera frame
 *
*****************************************************************************/
/*!
  \example servoViper850FourPointsKinect.cpp

  \brief Example of eye-in-hand control law. We control here a real robot, the
  Viper850 robot (cartesian robot, with 6 degrees of freedom). A kinect is
  attached to the hand. The velocity is computed in the kinect camera frame.
  Visual features are the image coordinates of 4 points.

*/

#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h> // Debug trace

#include <fstream>
#include <iostream>
#include <sstream>
#include <stdio.h>
#include <stdlib.h>

#if (defined(VISP_HAVE_VIPER850) && defined(VISP_HAVE_LIBFREENECT_AND_DEPENDENCIES))

#include <visp3/core/vpDisplay.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpImageConvert.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpPoint.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/robot/vpRobotViper850.h>
#include <visp3/sensor/vp1394TwoGrabber.h>
#include <visp3/sensor/vpKinect.h>
#include <visp3/vision/vpPose.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>

// Exception
#include <visp3/core/vpException.h>
#include <visp3/vs/vpServoDisplay.h>

#include <visp3/blob/vpDot2.h>
#define L 0.05 // to deal with a 10cm by 10cm square

/*!

  Compute the pose \e cMo from the 3D coordinates of the points \e point and
  their corresponding 2D coordinates \e dot. The pose is computed using a Lowe
  non linear method.

  \param point : 3D coordinates of the points.

  \param dot : 2D coordinates of the points.

  \param ndot : Number of points or dots used for the pose estimation.

  \param cam : Intrinsic camera parameters.

  \param cMo : Homogeneous matrix in output describing the transformation
  between the camera and object frame.

  \param init : Indicates if the we have to estimate an initial pose with
  Lagrange or Dementhon methods.

*/
void compute_pose(vpPoint point[], vpDot2 dot[], int ndot, vpCameraParameters cam, vpHomogeneousMatrix &cMo, bool init)
{
  vpRotationMatrix cRo;
  vpPose pose;
  vpImagePoint cog;
  for (int i = 0; i < ndot; i++) {

    double x = 0, y = 0;
    cog = dot[i].getCog();
    vpPixelMeterConversion::convertPoint(cam, cog, x,
                                         y); // pixel to meter conversion
    point[i].set_x(x);                       // projection perspective          p
    point[i].set_y(y);
    pose.addPoint(point[i]);
  }

  if (init == true) {
    pose.computePose(vpPose::DEMENTHON_LAGRANGE_VIRTUAL_VS, cMo);
  } else { // init = false; use of the previous pose to initialise VIRTUAL_VS
    pose.computePose(vpPose::VIRTUAL_VS, cMo);
  }
}

int main()
{
  // Log file creation in /tmp/$USERNAME/log.dat
  // This file contains by line:
  // - the 6 computed joint velocities (m/s, rad/s) to achieve the task
  // - the 6 mesured joint velocities (m/s, rad/s)
  // - the 6 mesured joint positions (m, rad)
  // - the 8 values of s - s*
  std::string username;
  // Get the user login name
  vpIoTools::getUserName(username);

  // Create a log filename to save velocities...
  std::string logdirname;
  logdirname = "/tmp/" + username;

  // Test if the output path exist. If no try to create it
  if (vpIoTools::checkDirectory(logdirname) == false) {
    try {
      // Create the dirname
      vpIoTools::makeDirectory(logdirname);
    } catch (...) {
      std::cerr << std::endl << "ERROR:" << std::endl;
      std::cerr << "  Cannot create " << logdirname << std::endl;
      return EXIT_FAILURE;
    }
  }
  std::string logfilename;
  logfilename = logdirname + "/log.dat";

  // Open the log file name
  std::ofstream flog(logfilename.c_str());

  try {
    vpRobotViper850 robot;
    // Load the end-effector to camera frame transformation obtained
    // using a camera intrinsic model with distortion
    vpCameraParameters::vpCameraParametersProjType projModel = vpCameraParameters::perspectiveProjWithDistortion;
    robot.init(vpRobotViper850::TOOL_GENERIC_CAMERA, projModel);

    vpServo task;

    vpImage<unsigned char> I;
    vpImage<vpRGBa> Irgb;
    int i;

#ifdef VISP_HAVE_LIBFREENECT_OLD
    // This is the way to initialize Freenect with an old version of
    // libfreenect packages under ubuntu lucid 10.04
    Freenect::Freenect<vpKinect> freenect;
    vpKinect &kinect = freenect.createDevice(0);
#else
    Freenect::Freenect freenect;
    vpKinect &kinect = freenect.createDevice<vpKinect>(0);
#endif

    kinect.start(vpKinect::DMAP_LOW_RES);
    kinect.getRGB(Irgb);
    vpImageConvert::convert(Irgb, I);

#ifdef VISP_HAVE_X11
    vpDisplayX display(I, 100, 100, "Current image");
#elif defined(HAVE_OPENCV_HIGHGUI)
    vpDisplayOpenCV display(I, 100, 100, "Current image");
#elif defined(VISP_HAVE_GTK)
    vpDisplayGTK display(I, 100, 100, "Current image");
#endif

    vpDisplay::display(I);
    vpDisplay::flush(I);

    std::cout << std::endl;
    std::cout << "-------------------------------------------------------" << std::endl;
    std::cout << " Test program for vpServo " << std::endl;
    std::cout << " Eye-in-hand task control, velocity computed in the camera space" << std::endl;
    std::cout << " Use of the Viper850 robot " << std::endl;
    std::cout << " task : servo 4 points on a square with dimention " << L << " meters" << std::endl;
    std::cout << "-------------------------------------------------------" << std::endl;
    std::cout << std::endl;

    vpDot2 dot[4];
    vpImagePoint cog;

    std::cout << "Click on the 4 dots clockwise starting from upper/left dot..." << std::endl;

    for (i = 0; i < 4; i++) {
      dot[i].initTracking(I);
      cog = dot[i].getCog();
      vpDisplay::displayCross(I, cog, 10, vpColor::blue);
      vpDisplay::flush(I);
    }

    // Get Kinect Camera Parameters
    vpCameraParameters cam;
    // kinect.getRGBCamParameters(cam);

    robot.getCameraParameters(cam, I);

    cam.printParameters();

    // Sets the current position of the visual feature
    vpFeaturePoint p[4];
    for (i = 0; i < 4; i++)
      vpFeatureBuilder::create(p[i], cam, dot[i]); // retrieve x,y  of the vpFeaturePoint structure

    // Set the position of the square target in a frame which origin is
    // centered in the middle of the square
    vpPoint point[4];
    point[0].setWorldCoordinates(-L, -L, 0);
    point[1].setWorldCoordinates(L, -L, 0);
    point[2].setWorldCoordinates(L, L, 0);
    point[3].setWorldCoordinates(-L, L, 0);

    // Initialise a desired pose to compute s*, the desired 2D point features
    vpHomogeneousMatrix cMo;
    vpTranslationVector cto(0, 0, 0.5); // tz = 0.5 meter
    vpRxyzVector cro(vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
    vpRotationMatrix cRo(cro); // Build the rotation matrix
    cMo.buildFrom(cto, cRo);   // Build the homogeneous matrix

    // Sets the desired position of the 2D visual feature
    vpFeaturePoint pd[4];
    // Compute the desired position of the features from the desired pose
    for (int i = 0; i < 4; i++) {
      vpColVector cP, p;
      point[i].changeFrame(cMo, cP);
      point[i].projection(cP, p);

      pd[i].set_x(p[0]);
      pd[i].set_y(p[1]);
      pd[i].set_Z(cP[2]);
    }

    // We want to see a point on a point
    for (i = 0; i < 4; i++)
      task.addFeature(p[i], pd[i]);

    // Set the proportional gain
    task.setLambda(0.5);

    // Display task information
    task.print();

    // Define the task
    // - we want an eye-in-hand control law
    // - articular velocity are computed
    task.setServo(vpServo::EYEINHAND_CAMERA);
    task.setInteractionMatrixType(vpServo::CURRENT, vpServo::PSEUDO_INVERSE);
    task.print();

    // Initialise the velocity control of the robot
    robot.setRobotState(vpRobot::STATE_VELOCITY_CONTROL);

    std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
    for (;;) {
      // Acquire a new image from the kinect
      kinect.getRGB(Irgb);
      vpImageConvert::convert(Irgb, I);

      // Display this image
      vpDisplay::display(I);

      try {
        // For each point...
        for (i = 0; i < 4; i++) {
          // Achieve the tracking of the dot in the image
          dot[i].track(I);
          // Display a green cross at the center of gravity position in the
          // image
          cog = dot[i].getCog();
          vpDisplay::displayCross(I, cog, 10, vpColor::green);
        }
      } catch (...) {
        flog.close(); // Close the log file
        vpTRACE("Error detected while tracking visual features");
        robot.stopMotion();
        kinect.stop();
        return EXIT_FAILURE;
      }

      // At first iteration, we initialise non linear pose estimation with a linear approach.
      // For the other iterations, non linear pose estimation is initialized with the pose estimated at previous
      // iteration of the loop
      compute_pose(point, dot, 4, cam, cMo, init_pose_from_linear_method);
      if (init_pose_from_linear_method) {
        init_pose_from_linear_method = false;
      }
      for (i = 0; i < 4; i++) {
        // Update the point feature from the dot location
        vpFeatureBuilder::create(p[i], cam, dot[i]);
        // Set the feature Z coordinate from the pose
        vpColVector cP;
        point[i].changeFrame(cMo, cP);

        p[i].set_Z(cP[2]);
      }

      vpColVector v;
      // Compute the visual servoing skew vector
      v = task.computeControlLaw();

      // Display the current and desired feature points in the image display
      vpServoDisplay::display(task, cam, I);

      // Apply the computed joint velocities to the robot
      robot.setVelocity(vpRobot::CAMERA_FRAME, v);

      // Save velocities applied to the robot in the log file
      // v[0], v[1], v[2] correspond to joint translation velocities in m/s
      // v[3], v[4], v[5] correspond to joint rotation velocities in rad/s
      flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";

      // Get the measured joint velocities of the robot
      vpColVector qvel;
      robot.getVelocity(vpRobot::ARTICULAR_FRAME, qvel);
      // Save measured joint velocities of the robot in the log file:
      // - qvel[0], qvel[1], qvel[2] correspond to measured joint translation
      //   velocities in m/s
      // - qvel[3], qvel[4], qvel[5] correspond to measured joint rotation
      //   velocities in rad/s
      flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " " << qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";

      // Get the measured joint positions of the robot
      vpColVector q;
      robot.getPosition(vpRobot::ARTICULAR_FRAME, q);
      // Save measured joint positions of the robot in the log file
      // - q[0], q[1], q[2] correspond to measured joint translation
      //   positions in m
      // - q[3], q[4], q[5] correspond to measured joint rotation
      //   positions in rad
      flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";

      // Save feature error (s-s*) for the 4 feature points. For each feature
      // point, we have 2 errors (along x and y axis).  This error is
      // expressed in meters in the camera frame
      flog << (task.getError()).t() << std::endl;

      // Flush the display
      vpDisplay::flush(I);

      // std::cout << "|| s - s* || = "  << ( task.getError() ).sumSquare() <<
      // std::endl;
    }

    kinect.stop();
    std::cout << "Display task information: " << std::endl;
    task.print();
    flog.close(); // Close the log file
    return EXIT_SUCCESS;
  } catch (const vpException &e) {
    flog.close(); // Close the log file
    std::cout << "Catch an exception: " << e.getMessage() << std::endl;
    return EXIT_FAILURE;
  }
}

#else
int main()
{
  std::cout << "You do not have an Viper 850 robot connected to your computer..." << std::endl;
  return EXIT_SUCCESS;
}
#endif