File: testKalmanVelocity.cpp

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (134 lines) | stat: -rw-r--r-- 4,421 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/****************************************************************************
 *
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Description:
 * Tests some vpLinearKalmanFilterInstantiation functionalities.
 *
*****************************************************************************/

/*!
  \example testKalmanVelocity.cpp

  \brief Test some vpLinearKalmanFilterInstantiation functionalities
  with constant velocity state model.
*/

#include <fstream>
#include <iostream>
#include <visp3/core/vpLinearKalmanFilterInstantiation.h>

typedef enum {
  Position, // Considered measures are the successive positions of the target
  Velocity  // Considered measures are the successive velocities of the target
} vpMeasureType;

int main()
{
  try {
    unsigned int nsignal = 2; // Number of signal to filter
    unsigned int niter = 200;
    unsigned int size_state_vector = 2 * nsignal;
    unsigned int size_measure_vector = 1 * nsignal;
    // vpMeasureType measure_t = Velocity;
    vpMeasureType measure_t = Position;

    std::string filename = "/tmp/log.dat";
    std::ofstream flog(filename.c_str());

    vpLinearKalmanFilterInstantiation kalman;

    vpColVector sigma_measure(size_measure_vector);
    for (unsigned int signal = 0; signal < nsignal; signal++)
      sigma_measure = 0.000001;
    vpColVector sigma_state(size_state_vector);

    switch (measure_t) {
    case Velocity:
      for (unsigned int signal = 0; signal < nsignal; signal++) {
        sigma_state[2 * signal] = 0.; // not used
        sigma_state[2 * signal + 1] = 0.000001;
      }
      break;
    case Position:
      for (unsigned int signal = 0; signal < nsignal; signal++) {
        sigma_state[2 * signal] = 0.000001;
        sigma_state[2 * signal + 1] = 0; // not used
      }
      break;
    }

    vpColVector measure(size_measure_vector);

    for (unsigned int signal = 0; signal < nsignal; signal++) {
      measure[signal] = 3 + 2 * signal;
    }

    kalman.verbose(true);

    vpLinearKalmanFilterInstantiation::vpStateModel model;
    double dt = 0.04; // Sampling period
    double rho = 0.5;
    double dummy = 0; // non used parameter
    switch (measure_t) {
    case Velocity:
      model = vpLinearKalmanFilterInstantiation::stateConstVelWithColoredNoise_MeasureVel;
      kalman.setStateModel(model);
      kalman.initFilter(nsignal, sigma_state, sigma_measure, rho, dummy);
      break;
    case Position:
      model = vpLinearKalmanFilterInstantiation::stateConstVel_MeasurePos;
      kalman.setStateModel(model);
      kalman.initFilter(nsignal, sigma_state, sigma_measure, dummy, dt);
      break;
    }

    for (unsigned int iter = 0; iter <= niter; iter++) {
      std::cout << "-------- iter " << iter << " ------------" << std::endl;
      for (unsigned int signal = 0; signal < nsignal; signal++) {
        measure[signal] = 3 + 2 * signal + 0.3 * sin(vpMath::rad(360. / niter * iter));
      }
      std::cout << "measure : " << measure.t() << std::endl;

      flog << measure.t();

      //    kalman.prediction();
      kalman.filter(measure);
      flog << kalman.Xest.t() << std::endl;

      std::cout << "Xest: " << kalman.Xest.t() << std::endl;
    }

    flog.close();
    return EXIT_SUCCESS;
  } catch (const vpException &e) {
    std::cout << "Catch an exception: " << e << std::endl;
    return EXIT_FAILURE;
  }
}