1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Tests some vpLinearKalmanFilterInstantiation functionalities.
*
*****************************************************************************/
/*!
\example testKalmanVelocity.cpp
\brief Test some vpLinearKalmanFilterInstantiation functionalities
with constant velocity state model.
*/
#include <fstream>
#include <iostream>
#include <visp3/core/vpLinearKalmanFilterInstantiation.h>
typedef enum {
Position, // Considered measures are the successive positions of the target
Velocity // Considered measures are the successive velocities of the target
} vpMeasureType;
int main()
{
try {
unsigned int nsignal = 2; // Number of signal to filter
unsigned int niter = 200;
unsigned int size_state_vector = 2 * nsignal;
unsigned int size_measure_vector = 1 * nsignal;
// vpMeasureType measure_t = Velocity;
vpMeasureType measure_t = Position;
std::string filename = "/tmp/log.dat";
std::ofstream flog(filename.c_str());
vpLinearKalmanFilterInstantiation kalman;
vpColVector sigma_measure(size_measure_vector);
for (unsigned int signal = 0; signal < nsignal; signal++)
sigma_measure = 0.000001;
vpColVector sigma_state(size_state_vector);
switch (measure_t) {
case Velocity:
for (unsigned int signal = 0; signal < nsignal; signal++) {
sigma_state[2 * signal] = 0.; // not used
sigma_state[2 * signal + 1] = 0.000001;
}
break;
case Position:
for (unsigned int signal = 0; signal < nsignal; signal++) {
sigma_state[2 * signal] = 0.000001;
sigma_state[2 * signal + 1] = 0; // not used
}
break;
}
vpColVector measure(size_measure_vector);
for (unsigned int signal = 0; signal < nsignal; signal++) {
measure[signal] = 3 + 2 * signal;
}
kalman.verbose(true);
vpLinearKalmanFilterInstantiation::vpStateModel model;
double dt = 0.04; // Sampling period
double rho = 0.5;
double dummy = 0; // non used parameter
switch (measure_t) {
case Velocity:
model = vpLinearKalmanFilterInstantiation::stateConstVelWithColoredNoise_MeasureVel;
kalman.setStateModel(model);
kalman.initFilter(nsignal, sigma_state, sigma_measure, rho, dummy);
break;
case Position:
model = vpLinearKalmanFilterInstantiation::stateConstVel_MeasurePos;
kalman.setStateModel(model);
kalman.initFilter(nsignal, sigma_state, sigma_measure, dummy, dt);
break;
}
for (unsigned int iter = 0; iter <= niter; iter++) {
std::cout << "-------- iter " << iter << " ------------" << std::endl;
for (unsigned int signal = 0; signal < nsignal; signal++) {
measure[signal] = 3 + 2 * signal + 0.3 * sin(vpMath::rad(360. / niter * iter));
}
std::cout << "measure : " << measure.t() << std::endl;
flog << measure.t();
// kalman.prediction();
kalman.filter(measure);
flog << kalman.Xest.t() << std::endl;
std::cout << "Xest: " << kalman.Xest.t() << std::endl;
}
flog.close();
return EXIT_SUCCESS;
} catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
|