1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Test theta.u and quaternion multiplication.
*
*****************************************************************************/
/*!
\example testRotation2.cpp
Test theta.u and quaternion multiplication.
*/
#include <visp3/core/vpConfig.h>
#ifdef VISP_HAVE_CATCH2
#include <visp3/core/vpThetaUVector.h>
#include <visp3/core/vpUniRand.h>
#define CATCH_CONFIG_RUNNER
#include <catch.hpp>
namespace
{
vpThetaUVector generateThetaU(vpUniRand &rng)
{
return vpThetaUVector(
vpMath::rad(rng.uniform(-180.0, 180.0)) *
vpColVector({rng.uniform(-1.0, 1.0), rng.uniform(-1.0, 1.0), rng.uniform(-1.0, 1.0)}).normalize());
}
vpQuaternionVector generateQuat(vpUniRand &rng)
{
const double angle = vpMath::rad(rng.uniform(-180.0, 180.0));
const double ctheta = std::cos(angle);
const double stheta = std::sin(angle);
const double ax = rng.uniform(-1.0, 1.0);
const double ay = rng.uniform(-1.0, 1.0);
const double az = rng.uniform(-1.0, 1.0);
return vpQuaternionVector(stheta * ax, stheta * ay, stheta * az, ctheta);
}
} // namespace
TEST_CASE("Theta u multiplication", "[theta.u]")
{
const int nTrials = 100;
const uint64_t seed = 0x123456789;
vpUniRand rng(seed);
for (int iter = 0; iter < nTrials; iter++) {
const vpThetaUVector tu0 = generateThetaU(rng);
const vpThetaUVector tu1 = generateThetaU(rng);
const vpRotationMatrix c1Rc2(tu0);
const vpRotationMatrix c2Rc3(tu1);
const vpRotationMatrix c1Rc3_ref = c1Rc2 * c2Rc3;
const vpThetaUVector c1_tu_c3 = tu0 * tu1;
// two rotation vectors can represent the same rotation,
// that is why we compare the rotation matrices
const vpRotationMatrix c1Rc3(c1_tu_c3);
const double tolerance = 1e-9;
for (unsigned int i = 0; i < 3; i++) {
for (unsigned int j = 0; j < 3; j++) {
CHECK(c1Rc3_ref[i][j] == Approx(c1Rc3[i][j]).epsilon(0).margin(tolerance));
}
}
}
}
TEST_CASE("Quaternion multiplication", "[quaternion]")
{
const int nTrials = 100;
const uint64_t seed = 0x123456789;
vpUniRand rng(seed);
for (int iter = 0; iter < nTrials; iter++) {
const vpQuaternionVector q0 = generateQuat(rng);
const vpQuaternionVector q1 = generateQuat(rng);
const vpRotationMatrix c1Rc2(q0);
const vpRotationMatrix c2Rc3(q1);
const vpRotationMatrix c1Rc3_ref = c1Rc2 * c2Rc3;
const vpQuaternionVector c1_q_c3 = q0 * q1;
// two quaternions of opposite sign can represent the same rotation,
// that is why we compare the rotation matrices
const vpRotationMatrix c1Rc3(c1_q_c3);
const double tolerance = 1e-9;
for (unsigned int i = 0; i < 3; i++) {
for (unsigned int j = 0; j < 3; j++) {
CHECK(c1Rc3_ref[i][j] == Approx(c1Rc3[i][j]).epsilon(0).margin(tolerance));
}
}
}
}
int main(int argc, char *argv[])
{
Catch::Session session; // There must be exactly one instance
// Let Catch (using Clara) parse the command line
session.applyCommandLine(argc, argv);
int numFailed = session.run();
// numFailed is clamped to 255 as some unices only use the lower 8 bits.
// This clamping has already been applied, so just return it here
// You can also do any post run clean-up here
return numFailed;
}
#else
#include <iostream>
int main() { return EXIT_SUCCESS; }
#endif
|