File: testPose.cpp

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (818 lines) | stat: -rw-r--r-- 35,637 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
/*
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Description:
 * Compute the pose of a 3D object using the Dementhon, Lagrange and
 * Non-Linear approach.
 */

#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpMeterPixelConversion.h>
#include <visp3/core/vpPixelMeterConversion.h>
#include <visp3/core/vpDebug.h>
#include <visp3/core/vpGaussRand.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpPoint.h>
#include <visp3/core/vpRotationMatrix.h>
#include <visp3/core/vpRxyzVector.h>
#include <visp3/core/vpTranslationVector.h>
#include <visp3/vision/vpPose.h>

#include <stdio.h>
#include <stdlib.h>

#define L 0.035
#define L2 0.1

/*!
  \example testPose.cpp

  Compute the pose of a 3D object using the Dementhon, Lagrange and
  Non-Linear approach.

*/

void print_pose(const vpHomogeneousMatrix &cMo, const std::string &legend);
int compare_pose(const vpPose &pose, const vpHomogeneousMatrix &cMo_ref, const vpHomogeneousMatrix &cMo_est, const vpCameraParameters &cam,
  const std::string &legend, const double &translation3DThresh, const double &rotationRadian3DThresh, const double &pose2DThresh, const double &posePixThresh);

int compare_pose(const vpPose &pose, const vpHomogeneousMatrix &cMo_ref, const vpHomogeneousMatrix &cMo_est, const vpCameraParameters &cam,
  const std::string &legend)
{
  return compare_pose(pose, cMo_ref, cMo_est, cam,
    legend, 0.001, 0.001, 0.001, 1.);
}

// print the resulting estimated pose
void print_pose(const vpHomogeneousMatrix &cMo, const std::string &legend)
{
  vpPoseVector cpo = vpPoseVector(cMo);

  std::cout << std::endl
    << legend << "\n "
    << "tx  = " << cpo[0] << "\n "
    << "ty  = " << cpo[1] << "\n "
    << "tz  = " << cpo[2] << "\n "
    << "tux = vpMath::rad(" << vpMath::deg(cpo[3]) << ")\n "
    << "tuy = vpMath::rad(" << vpMath::deg(cpo[4]) << ")\n "
    << "tuz = vpMath::rad(" << vpMath::deg(cpo[5]) << ")\n"
    << std::endl;
}

// test if pose is well estimated
int compare_pose(const vpPose &pose, const vpHomogeneousMatrix &cMo_ref, const vpHomogeneousMatrix &cMo_est, const vpCameraParameters &cam,
  const std::string &legend, const double &translation3DThresh, const double &rotation3DThresh, const double &pose2DThresh, const double &posePixThresh)
{
  vpPoseVector pose_ref = vpPoseVector(cMo_ref);
  vpPoseVector pose_est = vpPoseVector(cMo_est);

  int fail_3d = 0;

  // Test done on the 3D pose
  for (unsigned int i = 0; i < 6; i++) {
    double pose3DThresh = 0.;
    if (i < 3) {
      pose3DThresh = translation3DThresh;
    }
    else {
      pose3DThresh = rotation3DThresh;
    }
    if (std::fabs(pose_ref[i] - pose_est[i]) > pose3DThresh) {
      fail_3d = 1;
      std::cout << "ref[" << i << "] - est[" << i << "] = " << pose_ref[i] - pose_est[i] << " > " << pose3DThresh << std::endl;
    }
  }

  std::cout << "Based on 3D parameters " << legend << " is " << (fail_3d ? "badly" : "well") << " estimated" << std::endl;

  // // Test done on the residual

  // Residual expressed in meters
  double r = pose.computeResidual(cMo_est);
  if (pose.listP.size() < 4) {
    fail_3d = 1;
    std::cout << "Not enough point" << std::endl;
    return fail_3d;
  }
  r = sqrt(r / pose.listP.size());
  // std::cout << "Residual on each point (meter): " << r << std::endl;
  int fail_2d = (r > pose2DThresh) ? 1 : 0;
  std::cout << "Based on 2D residual (" << r << ") " << legend << " is " << (fail_2d ? "badly" : "well") << " estimated"
    << std::endl;

  // Residual expressed in pixels
  double r_pix = pose.computeResidual(cMo_est, cam);
  r_pix = sqrt(r_pix / pose.listP.size());
  // std::cout << "Residual on each point (pixel): " << r << std::endl;
  int fail_pix = (r_pix > posePixThresh) ? 1 : 0;
  std::cout << "Based on pixel residual (" << r_pix << ") " << legend << " is " << (fail_pix ? "badly" : "well") << " estimated"
    << std::endl;
  return fail_3d + fail_2d + fail_pix;
}

int main()
{
#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
  try {
    int test_planar_fail = 0, test_non_planar_fail = 0, fail = 0;
    const double translation3DthreshWhenNoise = 0.005;
    const double rotation3DthreshWhenNoise = vpMath::rad(1.);
    const double residual2DWhenNoise = 0.001;
    const double residualPixelWhenNoise = 1.;

    vpHomogeneousMatrix cMo; // will contain the estimated pose
    vpCameraParameters cam; // Default camera parameters to compute the residual in terms of pixel

    {
      //
      // Test planar case with 4 points
      //

      std::cout << "Start test considering planar case with 4 points..." << std::endl;
      std::cout << "===================================================" << std::endl;

      // vpPoseVector cpo_ref = vpPoseVector(0.01, 0.02, 0.25, vpMath::rad(5), 0, vpMath::rad(10));
      vpPoseVector cpo_ref = vpPoseVector(-0.01, -0.02, 0.3, vpMath::rad(20), vpMath::rad(-20), vpMath::rad(10));
      vpHomogeneousMatrix cMo_ref(cpo_ref);

      int npt = 4;
      std::vector<vpPoint> P(npt); //  Point to be tracked
      double Z = 0.05;             // FS: Dementhon estimation is not good when Z=0.3

      P[0].setWorldCoordinates(-L, -L, Z);
      P[1].setWorldCoordinates(L, -L, Z);
      P[2].setWorldCoordinates(L, L, Z);
      P[3].setWorldCoordinates(-L, L, Z);

      vpPose pose;

      for (int i = 0; i < npt; i++) {
        P[i].project(cMo_ref);
        // P[i].print();
        pose.addPoint(P[i]); // and added to the pose computation class
      }

      // Let's go ...

      print_pose(cMo_ref, std::string("Reference pose"));

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::LAGRANGE, cMo);

      print_pose(cMo, std::string("Pose estimated by Lagrange"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange");
      test_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon");
      test_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;

      pose.setRansacNbInliersToReachConsensus(4);
      pose.setRansacThreshold(0.01);
      pose.computePose(vpPose::RANSAC, cMo);

      print_pose(cMo, std::string("Pose estimated by Ransac"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Ransac");
      test_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::LAGRANGE_LOWE, cMo);

      print_pose(cMo, std::string("Pose estimated by Lagrange then Lowe"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange then Lowe");
      test_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON_LOWE, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon then Lowe"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then Lowe");
      test_planar_fail |= fail;

      // Now Virtual Visual servoing
      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by VVS");
      test_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON_VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon then by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then by VVS");
      test_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::LAGRANGE_VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated by Lagrange then by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange then by VVS");
      test_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON_LAGRANGE_VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated either by Dementhon or Lagrange then by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose either by Dementhon or Lagrange then by VVS");
      test_planar_fail |= fail;
    }

    {
      //
      // Test non-planar case with 6 points (at least 6 points for Lagrange non planar)
      //

      std::cout << "\nStart test considering non-planar case with 6 points..." << std::endl;
      std::cout << "=======================================================" << std::endl;

      vpPoseVector cpo_ref = vpPoseVector(0.01, 0.02, 0.25, vpMath::rad(5), 0, vpMath::rad(10));
      vpHomogeneousMatrix cMo_ref(cpo_ref);

      int npt = 6;
      std::vector<vpPoint> P(npt);         //  Point to be tracked
      P[0].setWorldCoordinates(-L, -L, 0); // Lagrange not accurate...
      P[0].setWorldCoordinates(-L, -L, -0.02);
      P[1].setWorldCoordinates(L, -L, 0);
      P[2].setWorldCoordinates(L, L, 0);
      P[3].setWorldCoordinates(-2 * L, 3 * L, 0);
      P[4].setWorldCoordinates(-L, L, 0.01);
      P[5].setWorldCoordinates(L, L / 2., 0.03);

      vpPose pose;

      for (int i = 0; i < npt; i++) {
        P[i].project(cMo_ref);
        // P[i].print();
        pose.addPoint(P[i]); // and added to the pose computation class
      }

      // Let's go ...
      print_pose(cMo_ref, std::string("Reference pose"));

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::LAGRANGE, cMo);

      print_pose(cMo, std::string("Pose estimated by Lagrange"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange");
      test_non_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon");
      test_non_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.setRansacNbInliersToReachConsensus(4);
      pose.setRansacThreshold(0.01);
      pose.computePose(vpPose::RANSAC, cMo);

      print_pose(cMo, std::string("Pose estimated by Ransac"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Ransac");
      test_non_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::LAGRANGE_LOWE, cMo);

      print_pose(cMo, std::string("Pose estimated by Lagrange then Lowe"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange then Lowe");
      test_non_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON_LOWE, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon then Lowe"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then Lowe");
      test_non_planar_fail |= fail;

      // Now Virtual Visual servoing

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by VVS");
      test_non_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON_VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon then by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then by VVS");
      test_non_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::LAGRANGE_VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated by Lagrange then by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange then by VVS");
      test_non_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON_LAGRANGE_VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated  either by Dementhon or Lagrange then by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose either by Dementhon or Lagrange then by VVS");
      test_non_planar_fail |= fail;
    }

    //
    // Test non-planar case with 4 points (Lagrange can not be used)
    //

    std::cout << "\nStart test considering non-planar case with 4 points..." << std::endl;
    std::cout << "=======================================================" << std::endl;

    {
      int npt = 4;
      std::vector<vpPoint> P(npt); //  Point to be tracked
      P[0].setWorldCoordinates(-L2, -L2, 0);
      P[1].setWorldCoordinates(L2, -L2, 0.2);
      P[2].setWorldCoordinates(L2, L2, -0.1);
      P[3].setWorldCoordinates(-L2, L2, 0);

      vpPose pose;

      vpPoseVector cpo_ref = vpPoseVector(-0.1, -0.2, 0.8, vpMath::rad(10), vpMath::rad(-10), vpMath::rad(25));
      vpHomogeneousMatrix cMo_ref(cpo_ref);

      for (int i = 0; i < npt; i++) {
        P[i].project(cMo_ref);
        //  P[i].print(); printf("\n");
        pose.addPoint(P[i]); // and added to the pose computation class
      }

      // Let's go ...
      print_pose(cMo_ref, std::string("Reference pose"));

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon");
      test_non_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.setRansacNbInliersToReachConsensus(4);
      pose.setRansacThreshold(0.01);
      pose.computePose(vpPose::RANSAC, cMo);

      print_pose(cMo, std::string("Pose estimated by Ransac"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Ransac");
      test_non_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON_LOWE, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon then Lowe"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then Lowe");
      test_non_planar_fail |= fail;

      // Now Virtual Visual servoing
      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by VVS");
      test_non_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON_VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon then by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then by VVS");
      test_non_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;

      pose.computePose(vpPose::DEMENTHON_LAGRANGE_VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated either by Dementhon or Lagrange then by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose either by Dementhon or Lagrange then by VVS");
      test_non_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;
    }

    //
    // Test computeResidual with results expressed in pixel
    //

    std::cout << "Start test considering planar case with 4 points and noise on the projection..." << std::endl;
    std::cout << "===================================================" << std::endl;
    {
      vpPoseVector cpo_ref = vpPoseVector(-0.01, -0.02, 0.3, vpMath::rad(20), vpMath::rad(-20), vpMath::rad(10));
      vpHomogeneousMatrix cMo_ref(cpo_ref);

      int npt = 4;
      std::vector<vpPoint> P(npt); //  Point to be tracked
      double Z = 0.05;             // FS: Dementhon estimation is not good when Z=0.3

      P[0].setWorldCoordinates(-L, -L, Z);
      P[1].setWorldCoordinates(L, -L, Z);
      P[2].setWorldCoordinates(L, L, Z);
      P[3].setWorldCoordinates(-L, L, Z);

      vpPose pose;
      vpGaussRand random(0.08, 0., 42); // Gaussian noise of mean = 0. and sigma = 1.

      for (int i = 0; i < npt; i++) {
        // Projecting point in camera frame
        P[i].project(cMo_ref);

        // Computing theoretical u and v based on the 2D coordinates
        double x_theo = P[i].get_X() / P[i].get_Z();
        double y_theo = P[i].get_Y() / P[i].get_Z();
        double u_theo = 0., v_theo = 0.;
        vpMeterPixelConversion::convertPoint(cam, x_theo, y_theo, u_theo, v_theo);

        // Adding noise to u, v
        double u_noisy = u_theo + random();
        double v_noisy = v_theo + random();

        // Computing corresponding x, y
        double x_noisy = 0., y_noisy = 0.;
        vpPixelMeterConversion::convertPoint(cam, u_noisy, v_noisy, x_noisy, y_noisy);

        P[i].set_x(x_noisy);
        P[i].set_y(y_noisy);

        pose.addPoint(P[i]); // and added to the pose computation class
        std::cout << "P[" << i << "]:\n\tu_theo = " << u_theo << "\tu_noisy = " << u_noisy << std::endl;
        std::cout << "\tv_theo = " << v_theo << "\tv_noisy = " << v_noisy << std::endl;
        std::cout << "\tx_theo = " << x_theo << "\ty_noisy = " << x_noisy << std::endl;
        std::cout << "\ty_theo = " << y_theo << "\tx_noisy = " << y_noisy << std::endl;
      }

      print_pose(cMo_ref, std::string("Reference pose"));

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::LAGRANGE, cMo);

      print_pose(cMo, std::string("Pose estimated by Lagrange"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;

      pose.setRansacNbInliersToReachConsensus(4);
      pose.setRansacThreshold(0.01);
      pose.computePose(vpPose::RANSAC, cMo);

      print_pose(cMo, std::string("Pose estimated by Ransac"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Ransac"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::LAGRANGE_LOWE, cMo);

      print_pose(cMo, std::string("Pose estimated by Lagrange then Lowe"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange then Lowe"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON_LOWE, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon then Lowe"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then Lowe"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_planar_fail |= fail;

      // Now Virtual Visual servoing
      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by VVS"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON_VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon then by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then by VVS"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::LAGRANGE_VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated by Lagrange then by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange then by VVS"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON_LAGRANGE_VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated either by Dementhon or Lagrange then by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose either by Dementhon or Lagrange then by VVS"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_planar_fail |= fail;
    }

    //
    // Test non-planar case with 6 points (at least 6 points for Lagrange non planar)
    //

    std::cout << "\nStart test considering non-planar case with 6 points and noise on the projection..." << std::endl;
    std::cout << "=======================================================" << std::endl;

    {
      vpPoseVector cpo_ref = vpPoseVector(0.01, 0.02, 0.25, vpMath::rad(5), 0, vpMath::rad(10));
      vpHomogeneousMatrix cMo_ref(cpo_ref);

      int npt = 6;
      std::vector<vpPoint> P(npt);         //  Point to be tracked
      P[0].setWorldCoordinates(-L, -L, 0); // Lagrange not accurate...
      P[0].setWorldCoordinates(-L, -L, -0.02);
      P[1].setWorldCoordinates(L, -L, 0);
      P[2].setWorldCoordinates(L, L, 0);
      P[3].setWorldCoordinates(-2 * L, 3 * L, 0);
      P[4].setWorldCoordinates(-L, L, 0.01);
      P[5].setWorldCoordinates(L, L / 2., 0.03);

      vpPose pose;
      vpGaussRand random(0.08, 0., 42); // Gaussian noise of mean = 0. and sigma = 1.

      for (int i = 0; i < npt; i++) {
        // Projecting point in camera frame
        P[i].project(cMo_ref);

        // Computing theoretical u and v based on the 2D coordinates
        double x_theo = P[i].get_X() / P[i].get_Z();
        double y_theo = P[i].get_Y() / P[i].get_Z();
        double u_theo = 0., v_theo = 0.;
        vpMeterPixelConversion::convertPoint(cam, x_theo, y_theo, u_theo, v_theo);

        // Adding noise to u, v
        double u_noisy = u_theo + random();
        double v_noisy = v_theo + random();

        // Computing corresponding x, y
        double x_noisy = 0., y_noisy = 0.;
        vpPixelMeterConversion::convertPoint(cam, u_noisy, v_noisy, x_noisy, y_noisy);

        P[i].set_x(x_noisy);
        P[i].set_y(y_noisy);

        pose.addPoint(P[i]); // and added to the pose computation class
        std::cout << "P[" << i << "]:\n\tu_theo = " << u_theo << "\tu_noisy = " << u_noisy << std::endl;
        std::cout << "\tv_theo = " << v_theo << "\tv_noisy = " << v_noisy << std::endl;
        std::cout << "\tx_theo = " << x_theo << "\ty_noisy = " << x_noisy << std::endl;
        std::cout << "\ty_theo = " << y_theo << "\tx_noisy = " << y_noisy << std::endl;
      }

      // Let's go ...
      print_pose(cMo_ref, std::string("Reference pose"));

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::LAGRANGE, cMo);

      print_pose(cMo, std::string("Pose estimated by Lagrange"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_non_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_non_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.setRansacNbInliersToReachConsensus(4);
      pose.setRansacThreshold(0.01);
      pose.computePose(vpPose::RANSAC, cMo);

      print_pose(cMo, std::string("Pose estimated by Ransac"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Ransac"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_non_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::LAGRANGE_LOWE, cMo);

      print_pose(cMo, std::string("Pose estimated by Lagrange then Lowe"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange then Lowe"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_non_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON_LOWE, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon then Lowe"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then Lowe"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_non_planar_fail |= fail;

      // Now Virtual Visual servoing

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by VVS"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_non_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON_VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon then by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then by VVS"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_non_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::LAGRANGE_VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated by Lagrange then by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange then by VVS"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_non_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON_LAGRANGE_VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated  either by Dementhon or Lagrange then by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose either by Dementhon or Lagrange then by VVS"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_non_planar_fail |= fail;
    }

    //
    // Test non-planar case with 4 points (Lagrange can not be used)
    //

    std::cout << "\nStart test considering non-planar case with 4 points and noise on the projection..." << std::endl;
    std::cout << "=======================================================" << std::endl;

    {
      int npt = 4;
      std::vector<vpPoint> P(npt); //  Point to be tracked
      P[0].setWorldCoordinates(-L2, -L2, 0.2);
      P[1].setWorldCoordinates(L2, -L2, 0.4);
      P[2].setWorldCoordinates(L2, L2, 0.1);
      P[3].setWorldCoordinates(-L2, L2, 0.4);

      vpPose pose;

      vpPoseVector cpo_ref = vpPoseVector(-0.1, -0.2, 0.8, vpMath::rad(10), vpMath::rad(-10), vpMath::rad(25));
      vpHomogeneousMatrix cMo_ref(cpo_ref);

      vpGaussRand random(0.08, 0., 42); // Gaussian noise of mean = 0. and sigma = 1.

      for (int i = 0; i < npt; i++) {
        // Projecting point in camera frame
        P[i].project(cMo_ref);

        // Computing theoretical u and v based on the 2D coordinates
        double x_theo = P[i].get_X() / P[i].get_Z();
        double y_theo = P[i].get_Y() / P[i].get_Z();
        double u_theo = 0., v_theo = 0.;
        vpMeterPixelConversion::convertPoint(cam, x_theo, y_theo, u_theo, v_theo);

        // Adding noise to u, v
        double u_noisy = u_theo + random();
        double v_noisy = v_theo + random();

        // Computing corresponding x, y
        double x_noisy = 0., y_noisy = 0.;
        vpPixelMeterConversion::convertPoint(cam, u_noisy, v_noisy, x_noisy, y_noisy);

        P[i].set_x(x_noisy);
        P[i].set_y(y_noisy);

        pose.addPoint(P[i]); // and added to the pose computation class
        std::cout << "P[" << i << "]:\n\tu_theo = " << u_theo << "\tu_noisy = " << u_noisy << std::endl;
        std::cout << "\tv_theo = " << v_theo << "\tv_noisy = " << v_noisy << std::endl;
        std::cout << "\tx_theo = " << x_theo << "\ty_noisy = " << x_noisy << std::endl;
        std::cout << "\ty_theo = " << y_theo << "\tx_noisy = " << y_noisy << std::endl;
      }

      // Let's go ...
      print_pose(cMo_ref, std::string("Reference pose"));

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_non_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.setRansacNbInliersToReachConsensus(4);
      pose.setRansacThreshold(0.01);
      pose.computePose(vpPose::RANSAC, cMo);

      print_pose(cMo, std::string("Pose estimated by Ransac"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Ransac"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_non_planar_fail |= fail;

      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON_LOWE, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon then Lowe"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then Lowe"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_non_planar_fail |= fail;

      // Now Virtual Visual servoing
      std::cout << "--------------------------------------------------" << std::endl;
      pose.computePose(vpPose::VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by VVS"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_non_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;
      pose.computePose(vpPose::DEMENTHON_VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated by Dementhon then by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then by VVS"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_non_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;

      pose.computePose(vpPose::DEMENTHON_LAGRANGE_VIRTUAL_VS, cMo);

      print_pose(cMo, std::string("Pose estimated either by Dementhon or Lagrange then by VVS"));
      fail = compare_pose(pose, cMo_ref, cMo, cam, "pose either by Dementhon or Lagrange then by VVS"
        , translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
      test_non_planar_fail |= fail;

      std::cout << "-------------------------------------------------" << std::endl;
    }

    std::cout << "=======================================================" << std::endl;
    std::cout << "Pose estimation test from planar points: " << (test_planar_fail ? "fail" : "is ok") << std::endl;
    std::cout << "Pose estimation test from non-planar points: " << (test_non_planar_fail ? "fail" : "is ok")
      << std::endl;
    std::cout << "Global pose estimation test: " << ((test_planar_fail | test_non_planar_fail) ? "fail" : "is ok")
      << std::endl;

    return ((test_planar_fail | test_non_planar_fail) ? EXIT_FAILURE : EXIT_SUCCESS);
  }
  catch (const vpException &e) {
    std::cout << "Catch an exception: " << e << std::endl;
    return EXIT_FAILURE;
  }
#else
  std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
  return EXIT_SUCCESS;
#endif
}