1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2022- ViSP contributor
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from matplotlib.patches import FancyArrowPatch
from mpl_toolkits.mplot3d import proj3d
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from numpy import linspace
import numpy as np
import argparse
import os
debug_print = False
def visp_thetau_to_rotation(thetau):
theta = np.linalg.norm(thetau)
si = np.sin(theta)
co = np.cos(theta)
sinc = visp_sinc(si, theta)
mcosc = visp_mcosc(co, theta)
R = np.empty((3,3))
R[0,0] = co + mcosc * thetau[0]**2
R[0,1] = -sinc * thetau[2] + mcosc * thetau[0] * thetau[1]
R[0,2] = sinc * thetau[1] + mcosc * thetau[0] * thetau[2]
R[1,0] = sinc * thetau[2] + mcosc * thetau[1] * thetau[0]
R[1,1] = co + mcosc * thetau[1]**2
R[1,2] = -sinc * thetau[0] + mcosc * thetau[1] * thetau[2]
R[2,0] = -sinc * thetau[1] + mcosc * thetau[2] * thetau[0]
R[2,1] = sinc * thetau[0] + mcosc * thetau[2] * thetau[1]
R[2,2] = co + mcosc * thetau[2]**2
return R
def visp_sinc(sinx, x):
ang_min_sinc = 1e-8
if np.abs(x) < ang_min_sinc:
return 1.0
else:
return sinx/x
def visp_mcosc(cosx, x):
ang_min_mc = 2.5e-4
if np.abs(x) < ang_min_mc:
return 0.5
else:
return (1-cosx) / x**2
def visp_rotation_to_thetau(R):
s = (R[1][0]-R[0][1])*(R[1][0]-R[0][1]) \
+ (R[2][0]-R[0][2])*(R[2][0]-R[0][2]) \
+ (R[2][1]-R[1][2])*(R[2][1]-R[1][2])
s = np.sqrt(s) / 2
c = (R[0][0]+R[1][1]+R[2][2]-1.0) / 2
theta = np.arctan2(s, c)
minimum = 0.0001
thetau = np.zeros((1,3))
if 1+c > minimum:
sinc = visp_sinc(s,theta)
thetau[0,0] = (R[2][1]-R[1][2])/(2*sinc)
thetau[0,1] = (R[0][2]-R[2][0])/(2*sinc)
thetau[0,2] = (R[1][0]-R[0][1])/(2*sinc)
else:
if (R[0][0]-c) < np.finfo(float).eps:
thetau[0,0] = 0
else:
thetau[0,0] = theta*(np.sqrt((R[0][0]-c)/(1-c)))
if R[2][1]-R[1][2] < 0:
thetau[0,0] = -thetau[0,0];
if (R[1][1]-c) < np.finfo(float).eps:
thetau[0,1] = 0
else:
thetau[0,1] = theta*(np.sqrt((R[1][1]-c)/(1-c)))
if (R[0][2]-R[2][0]) < 0:
thetau[0,1] = -thetau[0,1]
if (R[2][2]-c) < np.finfo(float).eps:
thetau[0,2] = 0
else:
thetau[0,2] = theta*(np.sqrt((R[2][2]-c)/(1-c)))
if ((R[1][0]-R[0][1]) < 0):
thetau[0,2] = -thetau[0,2]
return thetau
def load_camera_poses(filename, use_thetau=False):
if use_thetau:
camera_poses_raw = np.loadtxt(filename)
camera_poses = np.zeros((4*camera_poses_raw.shape[0], 4))
for i in range(camera_poses_raw.shape[0]):
camera_poses[i*4:i*4+3, 0:3] = visp_thetau_to_rotation(camera_poses_raw[i, 3:])
camera_poses[i*4:i*4+3, 3] = camera_poses_raw[i,0:3].T
camera_poses[i*4+3, 3] = 1
return camera_poses
else:
return np.loadtxt(filename)
def inverse_homogeneoux_matrix(M):
R = M[0:3, 0:3]
T = M[0:3, 3]
M_inv = np.identity(4)
M_inv[0:3, 0:3] = R.T
M_inv[0:3, 3] = -(R.T).dot(T)
return M_inv
def draw_camera(ax, cam_pose, cam_width, cam_height, cam_focal, scale, color='r'):
width_scale = scale * cam_width
height_scale = scale * cam_height
f_scale = scale * cam_focal
# Draw camera image plane
xs_img_plane = [-width_scale, width_scale, width_scale, -width_scale, -width_scale]
ys_img_plane = [height_scale, height_scale, -height_scale, -height_scale, height_scale]
zs_img_plane = [f_scale, f_scale, f_scale, f_scale, f_scale]
for i in range(len(xs_img_plane)):
vec = np.ones((4,1))
vec[0] = xs_img_plane[i]
vec[1] = ys_img_plane[i]
vec[2] = zs_img_plane[i]
res = cam_pose.dot(vec)
xs_img_plane[i] = res[0,0]
ys_img_plane[i] = res[1,0]
zs_img_plane[i] = res[2,0]
ax.plot3D(xs_img_plane, ys_img_plane, zs_img_plane, color=color)
xs_center1 = [0, -width_scale]
ys_center1 = [0, height_scale]
zs_center1 = [0, f_scale]
for i in range(len(xs_center1)):
vec = np.ones((4,1))
vec[0] = xs_center1[i]
vec[1] = ys_center1[i]
vec[2] = zs_center1[i]
res = cam_pose @ vec
xs_center1[i] = res[0,0]
ys_center1[i] = res[1,0]
zs_center1[i] = res[2,0]
ax.plot3D(xs_center1, ys_center1, zs_center1, color=color)
xs_center2 = [0, width_scale]
ys_center2 = [0, height_scale]
zs_center2 = [0, f_scale]
for i in range(len(xs_center2)):
vec = np.ones((4,1))
vec[0] = xs_center2[i]
vec[1] = ys_center2[i]
vec[2] = zs_center2[i]
res = cam_pose.dot(vec)
xs_center2[i] = res[0,0]
ys_center2[i] = res[1,0]
zs_center2[i] = res[2,0]
ax.plot3D(xs_center2, ys_center2, zs_center2, color=color)
xs_center3 = [0, width_scale]
ys_center3 = [0, -height_scale]
zs_center3 = [0, f_scale]
for i in range(len(xs_center3)):
vec = np.ones((4,1))
vec[0] = xs_center3[i]
vec[1] = ys_center3[i]
vec[2] = zs_center3[i]
res = cam_pose.dot(vec)
xs_center3[i] = res[0,0]
ys_center3[i] = res[1,0]
zs_center3[i] = res[2,0]
ax.plot3D(xs_center3, ys_center3, zs_center3, color=color)
xs_center4 = [0, -width_scale]
ys_center4 = [0, -height_scale]
zs_center4 = [0, f_scale]
for i in range(len(zs_center4)):
vec = np.ones((4,1))
vec[0] = xs_center4[i]
vec[1] = ys_center4[i]
vec[2] = zs_center4[i]
res = cam_pose.dot(vec)
xs_center4[i] = res[0,0]
ys_center4[i] = res[1,0]
zs_center4[i] = res[2,0]
ax.plot3D(xs_center4, ys_center4, zs_center4, color=color)
# Draw triangle above the camera image plane
X_triangle = np.ones((4,3))
X_triangle[0:3,0] = [-width_scale, -height_scale, f_scale]
X_triangle[0:3,1] = [0, -2*height_scale, f_scale]
X_triangle[0:3,2] = [width_scale, -height_scale, f_scale]
for i in range(X_triangle.shape[1]):
vec = np.ones((4,1))
vec[0] = X_triangle[0,i]
vec[1] = X_triangle[1,i]
vec[2] = X_triangle[2,i]
res = cam_pose.dot(vec)
X_triangle[0,i] = res[0,0]
X_triangle[1,i] = res[1,0]
X_triangle[2,i] = res[2,0]
ax.plot3D(X_triangle[0,:], X_triangle[1,:], X_triangle[2,:], color=color)
def draw_camera_path(ax, camera_poses, colors):
for i in range(0, camera_poses.shape[0]-4, 4):
camera_pose1 = camera_poses[i:i+4,:]
camera_pose2 = camera_poses[i+4:i+8,:]
ax.plot([camera_pose1[0,3], camera_pose2[0,3]],
[camera_pose1[1,3], camera_pose2[1,3]],
[camera_pose1[2,3], camera_pose2[2,3]], color=colors[i//4])
def draw_sphere(ax, tx, ty, tz, radius, color='b'):
u, v = np.mgrid[0:2*np.pi:20j, 0:np.pi:10j]
x = radius * np.cos(u)*np.sin(v) + tx
y = radius * np.sin(u)*np.sin(v) + ty
z = radius * np.cos(v) + tz
ax.plot_wireframe(x, y, z, color=color)
def draw_model(ax, model, color='b'):
# Lines
if debug_print:
print(f"model.lines_vec: {len(model.lines_vec)}")
for line in model.lines_vec:
ax.plot3D(xs=[line.start_pt[0], line.end_pt[0]], ys=[line.start_pt[1], line.end_pt[1]], zs=[line.start_pt[2], line.end_pt[2]], color=color)
# Faces
if debug_print:
print(f"model.faces_vec: {len(model.faces_vec)}")
for face in model.faces_vec:
for idx, pt0 in enumerate(face.pts_vec):
if idx == len(face.pts_vec)-1:
pt1 = face.pts_vec[0]
else:
pt1 = face.pts_vec[idx+1]
ax.plot3D(xs=[pt0[0], pt1[0]], ys=[pt0[1], pt1[1]], zs=[pt0[2], pt1[2]], color=color)
# Cylinders
if debug_print:
print(f"model.cylinders_vec: {len(model.cylinders_vec)}")
for cylinder in model.cylinders_vec:
ax.plot_surface(cylinder.Xo, cylinder.Yo, cylinder.Zo, alpha=0.5)
# Spheres
if debug_print:
print(f"model.spheres_vec: {len(model.spheres_vec)}")
for sphere in model.spheres_vec:
draw_sphere(ax, sphere.center[0], sphere.center[1], sphere.center[2], sphere.radius, color=color)
# https://stackoverflow.com/a/11156353/6055233
class Arrow3D(FancyArrowPatch):
def __init__(self, xs, ys, zs, *args, **kwargs):
FancyArrowPatch.__init__(self, (0, 0), (0, 0), *args, **kwargs)
self._verts3d = xs, ys, zs
def draw(self, renderer):
xs3d, ys3d, zs3d = self._verts3d
xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, self.axes.M)
self.set_positions((xs[0], ys[0]), (xs[1], ys[1]))
FancyArrowPatch.draw(self, renderer)
# https://github.com/matplotlib/matplotlib/issues/21688#issuecomment-974912574
def do_3d_projection(self, renderer=None):
xs3d, ys3d, zs3d = self._verts3d
xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, self.axes.M)
self.set_positions((xs[0],ys[0]),(xs[1],ys[1]))
return np.min(zs)
def draw_model_frame(ax, wRo, size=0.05):
x_axis = wRo @ np.array([size, 0, 0])
x_arrow = Arrow3D([0, x_axis[0]], [0, x_axis[1]], [0, x_axis[2]], mutation_scale=20, lw=1, arrowstyle="-|>", color="r")
ax.add_artist(x_arrow)
y_axis = wRo @ np.array([0, size, 0])
y_arrow = Arrow3D([0, y_axis[0]], [0, y_axis[1]], [0, y_axis[2]], mutation_scale=20, lw=1, arrowstyle="-|>", color="g")
ax.add_artist(y_arrow)
z_axis = wRo @ np.array([0, 0, size])
z_arrow = Arrow3D([0, z_axis[0]], [0, z_axis[1]], [0, z_axis[2]], mutation_scale=20, lw=1, arrowstyle="-|>", color="b")
ax.add_artist(z_arrow)
# https://stackoverflow.com/a/63625222
# Functions from @Mateen Ulhaq and @karlo
def set_axes_equal(ax: plt.Axes):
"""Set 3D plot axes to equal scale.
Make axes of 3D plot have equal scale so that spheres appear as
spheres and cubes as cubes. Required since `ax.axis('equal')`
and `ax.set_aspect('equal')` don't work on 3D.
"""
limits = np.array([
ax.get_xlim3d(),
ax.get_ylim3d(),
ax.get_zlim3d(),
])
origin = np.mean(limits, axis=1)
radius = 0.5 * np.max(np.abs(limits[:, 1] - limits[:, 0]))
_set_axes_radius(ax, origin, radius)
def _set_axes_radius(ax, origin, radius):
x, y, z = origin
ax.set_xlim3d([x - radius, x + radius])
ax.set_ylim3d([y - radius, y + radius])
ax.set_zlim3d([z - radius, z + radius])
def plot_poses(camera_poses):
fig, axarr = plt.subplots(3,2, sharex=True)
axarr[0,0].plot(camera_poses[0::4,3])
axarr[1,0].plot(camera_poses[1::4,3])
axarr[2,0].plot(camera_poses[2::4,3])
axarr[0,0].grid(True)
axarr[1,0].grid(True)
axarr[2,0].grid(True)
thetau_vec = np.zeros((camera_poses.shape[0]//4,3))
for i in range(0,camera_poses.shape[0],4):
thetau_vec[i//4] = visp_rotation_to_thetau(camera_poses[i:i+3,:3])
axarr[0,1].plot(np.degrees(thetau_vec[:,0]))
axarr[1,1].plot(np.degrees(thetau_vec[:,1]))
axarr[2,1].plot(np.degrees(thetau_vec[:,2]))
axarr[0,1].grid(True)
axarr[1,1].grid(True)
axarr[2,1].grid(True)
axarr[2,0].set_xlabel("Frame #")
axarr[0,0].set_ylabel(r"$ t_x $ (m)")
axarr[1,0].set_ylabel(r"$ t_y $ (m)")
axarr[2,0].set_ylabel(r"$ t_z $ (m)")
axarr[2,1].set_xlabel("Frame #")
axarr[0,1].set_ylabel(r"$ \theta u_x $ (deg)")
axarr[1,1].set_ylabel(r"$ \theta u_y $ (deg)")
axarr[2,1].set_ylabel(r"$ \theta u_z $ (deg)")
fig.suptitle('Camera poses')
def get_colormap(number_of_lines, colormap):
start = 0
stop = 1
cm_subsection = linspace(start, stop, number_of_lines)
colors = [ plt.get_cmap(colormap)(x) for x in cm_subsection ]
return colors
def remove_comment(str):
idx = str.find("#")
if idx != -1:
return str[0:idx]
else:
return str
def remove_primitive_name(str):
idx = str.find("name=")
if idx != -1:
return str[0:idx]
else:
return str
def transform(X, M):
X_transf = [
M[0,0]*X[0] + M[0,1]*X[1] + M[0,2]*X[2] + M[0,3],
M[1,0]*X[0] + M[1,1]*X[1] + M[1,2]*X[2] + M[1,3],
M[2,0]*X[0] + M[2,1]*X[1] + M[2,2]*X[2] + M[2,3]
]
return X_transf
class Line:
def __init__(self, start_pt, end_pt):
self.start_pt = start_pt
self.end_pt = end_pt
def __repr__(self):
return f"start: {self.start_pt} / end: {self.end_pt}\n"
def __str__(self):
return f"start: {self.start_pt} / end: {self.end_pt}\n"
# TODO: use object points and transformed object points members?
def transform(self, M):
self.start_pt = transform(self.start_pt, M)
self.end_pt = transform(self.end_pt, M)
class Face:
def __init__(self, pts_vec):
self.pts_vec = pts_vec
def __repr__(self):
return f"pts_vec={len(self.pts_vec)}:\n{self.pts_vec}\n"
def __str__(self):
return f"pts_vec={len(self.pts_vec)}:\n{self.pts_vec}\n"
# TODO: use object points and transformed object points members?
def transform(self, M):
for i in range(len(self.pts_vec)):
self.pts_vec[i] = transform(self.pts_vec[i], M)
class Cylinder:
def __init__(self, point_1, point_2, radius):
self.point_1 = np.asarray(point_1)
self.point_2 = np.asarray(point_2)
self.radius = radius
center_x = (point_2[0] - point_1[0]) / 2
center_y = (point_2[1] - point_1[1]) / 2
height = np.linalg.norm(self.point_1 - self.point_2)
self.Xc, self.Yc, self.Zc = data_for_cylinder_along_z(center_x, center_y, radius, height)
self.Xo = self.Xc
self.Yo = self.Yc
self.Zo = self.Zc
def __repr__(self):
return f"point_1={self.point_1} ; point_2={self.point_2} ; radius={self.radius}\n"
def __str__(self):
return f"point_1={self.point_1} ; point_2={self.point_2} ; radius={self.radius}\n"
def transform(self, M):
for i in range(self.Xc.shape[0]):
for j in range(self.Xc.shape[1]):
X_transf = transform(np.array([self.Xc[i,j], self.Yc[i,j], self.Zc[i,j]]), M)
self.Xo[i,j] = X_transf[0]
self.Yo[i,j] = X_transf[1]
self.Zo[i,j] = X_transf[2]
class Sphere:
def __init__(self, center, radius):
self.center = center
self.radius = radius
def __repr__(self):
return f"center: {self.center} ; radius: {self.radius}\n"
def __str__(self):
return f"center: {self.center} ; radius: {self.radius}\n"
# TODO: use object points and transformed object points members?
def transform(self, M):
self.center = transform(self.center, M)
class Model:
def __init__(self, lines_vec, faces_vec, cylinders_vec, spheres_vec):
self.lines_vec = lines_vec
self.faces_vec = faces_vec
self.cylinders_vec = cylinders_vec
self.spheres_vec = spheres_vec
def __repr__(self):
return f"Lines:\n{self.lines_vec}\nFaces:{self.faces_vec}\nCylinders:{self.cylinders_vec}\nSpheres:{self.spheres_vec}\n"
def __str__(self):
return f"Lines:\n{self.lines_vec}\nFaces:{self.faces_vec}\nCylinders:{self.cylinders_vec}\nSpheres:{self.spheres_vec}\n"
def extend(self, other):
self.lines_vec.extend(other.lines_vec)
self.faces_vec.extend(other.faces_vec)
self.cylinders_vec.extend(other.cylinders_vec)
self.spheres_vec.extend(other.spheres_vec)
def transform(self, M):
for i in range(len(self.lines_vec)):
self.lines_vec[i].transform(M)
for i in range(len(self.faces_vec)):
self.faces_vec[i].transform(M)
for i in range(len(self.cylinders_vec)):
self.cylinders_vec[i].transform(M)
for i in range(len(self.spheres_vec)):
self.spheres_vec[i].transform(M)
# https://stackoverflow.com/a/49311446/6055233
def data_for_cylinder_along_z(center_x,center_y,radius,height_z):
z = np.linspace(0, height_z, 50)
theta = np.linspace(0, 2*np.pi, 50)
theta_grid, z_grid=np.meshgrid(theta, z)
x_grid = radius*np.cos(theta_grid) + center_x
y_grid = radius*np.sin(theta_grid) + center_y
return x_grid,y_grid,z_grid
def parse_cao_model(filename):
with open(filename) as file:
state = 0
pts_vec = []
lines_vec = []
line_faces_vec = []
point_faces_vec = []
cylinders_vec = []
circles_vec = []
max_iter = 10000
for _ in range(max_iter):
raw_line = file.readline()
if "" == raw_line:
break
line = remove_comment(raw_line.rstrip('\n').strip())
if line:
if state == 0:
if any(version_number in line for version_number in ["V0", "V1"]):
state = 1
else:
raise ValueError("CAO model should have at the beginning the version number (either V0 or V1).")
elif state == 1:
nb_pts = int(line)
print(f"nb_pts: {nb_pts}")
# Parse object points coordinates
i = 0
while i < nb_pts:
raw_line = file.readline()
if "" == raw_line:
break
line = remove_comment(raw_line.rstrip('\n').strip())
if line:
i += 1
pts_vec.append([float(number) for number in line.split()])
state = 2
elif state == 2:
nb_lines = int(line)
print(f"nb_lines: {nb_lines}")
if nb_lines == 0:
state = 3
# Parse line points indices
i = 0
while i < nb_lines:
raw_line = file.readline()
if "" == raw_line:
break
line = remove_comment(raw_line.rstrip('\n').strip())
line = remove_primitive_name(line)
if line:
i += 1
line_pt_idx = [int(number) for number in line.split()]
assert len(line_pt_idx) == 2, "len(line_pt_idx) != 2"
lines_vec.append(Line(pts_vec[line_pt_idx[0]], pts_vec[line_pt_idx[1]]))
state = 3
elif state == 3:
nb_line_faces = int(line)
print(f"nb_line_faces: {nb_line_faces}")
if nb_line_faces == 0:
state = 4
# Parse line face number + indices
i = 0
while i < nb_line_faces:
raw_line = file.readline()
if "" == raw_line:
break
line = remove_comment(raw_line.rstrip('\n').strip())
line = remove_primitive_name(line)
if line:
i += 1
line_faces_idx = [int(number) for number in line.split()]
dbg_msg = f"len(line_faces_idx) == line_faces_idx[0]+1, len(line_faces_idx)={len(line_faces_idx)}, line_faces_idx[0]={line_faces_idx[0]}"
assert len(line_faces_idx) == line_faces_idx[0]+1, dbg_msg
line_faces_idx = line_faces_idx[1:]
face_pts = []
face_pts.extend([[lines_vec[idx].start_pt, lines_vec[idx].end_pt] for idx in line_faces_idx])
line_faces_vec.append(Face(face_pts))
state = 4
elif state == 4:
nb_point_faces = int(line)
print(f"nb_point_faces: {nb_point_faces}")
if nb_point_faces == 0:
state = 5
# Parse point face number + indices
i = 0
while i < nb_point_faces:
raw_line = file.readline()
if "" == raw_line:
break
line = remove_comment(raw_line.rstrip('\n').strip())
line = remove_primitive_name(line)
if line:
i += 1
point_faces_idx = [int(number) for number in line.split()]
dbg_msg = f"len(point_faces_idx) == point_faces_idx[0]+1, len(point_faces_idx)={len(point_faces_idx)}, point_faces_idx[0]={point_faces_idx[0]}"
assert len(point_faces_idx) == point_faces_idx[0]+1, dbg_msg
point_faces_idx = point_faces_idx[1:]
face_pts = []
face_pts.extend([pts_vec[idx] for idx in point_faces_idx])
point_faces_vec.append(Face(face_pts))
state = 5
elif state == 5:
nb_cylinders = int(line)
print(f"nb_cylinders: {nb_cylinders}")
if nb_cylinders == 0:
state = 6
# Parse cylinders
i = 0
while i < nb_cylinders:
raw_line = file.readline()
if "" == raw_line:
break
line = remove_comment(raw_line.rstrip('\n').strip())
line = remove_primitive_name(line)
if line:
i += 1
data = [number for number in line.split()]
radius = float(data[2])
point_1 = pts_vec[int(data[0])]
point_2 = pts_vec[int(data[1])]
cylinders_vec.append(Cylinder(point_1, point_2, radius))
state = 6
elif state == 6:
nb_circles = int(line)
print(f"nb_circles: {nb_circles}")
if nb_circles == 0:
state = 7
# Parse circles
i = 0
while i < nb_circles:
raw_line = file.readline()
if "" == raw_line:
break
line = remove_comment(raw_line.rstrip('\n').strip())
line = remove_primitive_name(line)
if line:
i += 1
data = [number for number in line.split()]
radius = float(data[0])
center = pts_vec[int(data[1])]
circles_vec.append(Sphere(center, radius))
state = 7
if debug_print:
print(f"pts_vec:\n{pts_vec}")
print(f"lines_vec:\n{lines_vec}")
print(f"line_faces_vec:\n{line_faces_vec}")
print(f"point_faces_vec:\n{point_faces_vec}")
print(f"cylinders_vec:\n{cylinders_vec}")
print(f"circles_vec:\n{circles_vec}")
faces_vec = line_faces_vec
faces_vec.extend(point_faces_vec)
return Model(lines_vec, faces_vec, cylinders_vec, circles_vec)
def center_viewport(ax, x_lim, y_lim, z_lim, print_lim=False):
# https://stackoverflow.com/a/31364297/6055233
x_limits = ax.get_xlim3d()
y_limits = ax.get_ylim3d()
z_limits = ax.get_zlim3d()
x_range = abs(x_limits[1] - x_limits[0])
x_middle = np.mean(x_limits)
y_range = abs(y_limits[1] - y_limits[0])
y_middle = np.mean(y_limits)
z_range = abs(z_limits[1] - z_limits[0])
z_middle = np.mean(z_limits)
# The plot bounding box is a sphere in the sense of the infinity
# norm, hence I call half the max range the plot radius.
plot_radius = 0.5*max([x_range, y_range, z_range])
if np.isnan(x_lim[0]) or np.isnan(x_lim[1]):
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
else:
ax.set_xlim3d([x_lim[0], x_lim[1]])
if np.isnan(y_lim[0]) or np.isnan(y_lim[1]):
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
else:
ax.set_ylim3d([y_lim[0], y_lim[1]])
if np.isnan(z_lim[0]) or np.isnan(z_lim[1]):
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
else:
ax.set_zlim3d([z_lim[0], z_lim[1]])
if print_lim:
print(f"X-axis limit: {ax.get_xlim3d()}")
print(f"Y-axis limit: {ax.get_ylim3d()}")
print(f"Z-axis limit: {ax.get_zlim3d()}")
def main():
parser = argparse.ArgumentParser(description='Plot camera trajectory from poses and CAO model files.')
parser.add_argument('-p', type=str, nargs=1, required=True, help='Path to poses file.')
parser.add_argument('--theta-u', action='store_true', default=False,
help='If true, camera poses are expressed using [tx ty tz tux tuy tuz] formalism, otherwise in homogeneous form.')
parser.add_argument('-m', type=str, nargs=1, required=True, help='Path to CAO model file.')
parser.add_argument('--colormap', default='gist_rainbow', type=str, help='Colormap to use for the camera path.')
parser.add_argument('--save', action='store_true', help='If true, save the figures on disk.')
parser.add_argument('--save-dir', default='images', type=str, help='If --save flag is set, the folder where to save the plot images.')
parser.add_argument('--save-pattern', default='image_{:06d}.png', type=str, help='Image filename pattern when saving.')
parser.add_argument('--save-dpi', default=300, type=int, help='Image dpi when saving.')
parser.add_argument('--step', type=int, help='Step number between each camera poses when drawing.')
parser.add_argument('--axes-label-size', type=int, default=20, help='Axes label size.')
parser.add_argument('--xtick-label-size', type=int, default=14, help='X-tick label size.')
parser.add_argument('--ytick-label-size', type=int, default=14, help='Y-tick label size.')
parser.add_argument('--axes-title-size', type=int, default=28, help='Axes title size.')
parser.add_argument('--figure-title-size', type=int, default=30, help='Figure title size.')
parser.add_argument('--cam-width', type=float, default=640/2000., help='Camera width size when drawing the camera poses.')
parser.add_argument('--cam-height', type=float, default=480/2000., help='Camera height size when drawing the camera poses.')
parser.add_argument('--cam-focal', type=float, default=600/1000., help='Camera focal length when drawing the camera poses.')
parser.add_argument('--cam-scale', type=float, default=0.2, help='This is used to scale the camera when drawing the camera poses.')
parser.add_argument('--wRo', type=float, nargs=3, default=[0, 0, 0],
help='Rotation from object model frame to Matplotlib frame in theta.u format.\n'
'You can use this site for rotation conversion: https://www.andre-gaschler.com/rotationconverter/')
parser.add_argument('--frame-size', type=float, default=0.05, help='Coordinates frame size for display.')
parser.add_argument('--plot-cam-poses', action='store_true', help='If true, plot camera poses on a graph.')
parser.add_argument('--azim', type=float, default=-60, help='3D plot initial view azimuth.')
parser.add_argument('--elev', type=float, default=30, help='3D plot initial view elevation.')
parser.add_argument('--num-cam', type=int, default=10, help='Number of camera poses to draw.')
parser.add_argument('--x-lim', type=float, nargs=2, default=[np.nan, np.nan], help='Manually set the x-limit for the viewport.')
parser.add_argument('--y-lim', type=float, nargs=2, default=[np.nan, np.nan], help='Manually set the y-limit for the viewport.')
parser.add_argument('--z-lim', type=float, nargs=2, default=[np.nan, np.nan], help='Manually set the z-limit for the viewport.')
args = parser.parse_args()
axes_label_size = args.axes_label_size
xtick_label_size = args.xtick_label_size
ytick_label_size = args.ytick_label_size
axes_title_size = args.axes_title_size
fig_title_size = args.figure_title_size
print(f"Figure axes label size: {axes_label_size}")
print(f"Figure x-tick label size: {xtick_label_size}")
print(f"Figure y-tick label size: {ytick_label_size}")
print(f"Figure axes title size: {axes_title_size}")
print(f"Figure title size: {fig_title_size}")
params = {
'axes.labelsize': axes_label_size,
'xtick.labelsize': xtick_label_size,
'ytick.labelsize': ytick_label_size,
'axes.titlesize': axes_title_size,
'figure.titlesize': fig_title_size
}
plt.rcParams.update(params)
cam_width = args.cam_width
cam_height = args.cam_height
cam_focal = args.cam_focal
cam_scale = args.cam_scale
print(f"Camera width when drawing the camera poses: {cam_width}")
print(f"Camera height when drawing the camera poses: {cam_height}")
print(f"Camera focal length when drawing the camera poses: {cam_focal}")
print(f"Camera scale when drawing the camera poses: {cam_scale}")
# Load camera poses
camera_pose_filename = args.p[0]
use_thetau = args.theta_u
print(f"Load camera poses from: {camera_pose_filename} ; Use theta-u? {use_thetau}")
camera_poses = load_camera_poses(camera_pose_filename, use_thetau)
print("poses: ", camera_poses.shape)
colormap = args.colormap
print(f"Colormap: {colormap}")
camera_colors = get_colormap(camera_poses.shape[0]//4, colormap)
# Load model
model_filename = args.m[0]
print(f"Load object CAO model from: {model_filename}")
model = parse_cao_model(model_filename)
w_M_o = np.eye(4)
w_M_o[:3,:3] = visp_thetau_to_rotation(np.array(args.wRo))
print(f"w_M_o:\n{w_M_o}")
model.transform(w_M_o)
inverse_camera_poses = np.zeros(camera_poses.shape)
for i in range(0, camera_poses.shape[0], 4):
inverse_camera_poses[i:i+4,:] = w_M_o @ inverse_homogeneoux_matrix(camera_poses[i:i+4,:])
frame_size = args.frame_size
num_cam = args.num_cam
x_lim = args.x_lim
y_lim = args.y_lim
z_lim = args.z_lim
pose_step = inverse_camera_poses.shape[0] // (4*num_cam)
print(f"Draw approximatively {num_cam} cameras, or approximatively every {pose_step} poses") # TODO:
if args.save:
output_folder = args.save_dir
print(f"Save the plot images to {output_folder} folder")
os.makedirs(output_folder, exist_ok=True)
for cpt in range(0, inverse_camera_poses.shape[0]-4, 4):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_aspect("auto")
inverse_camera_pose1 = inverse_camera_poses[cpt:cpt+4,:]
inverse_camera_pose2 = inverse_camera_poses[cpt+4:cpt+8,:]
ax.plot([inverse_camera_pose1[0,3], inverse_camera_pose2[0,3]],
[inverse_camera_pose1[1,3], inverse_camera_pose2[1,3]],
[inverse_camera_pose1[2,3], inverse_camera_pose2[2,3]], color=camera_colors[cpt//4])
for i in range(0, cpt, 4*pose_step):
camera_pose = inverse_camera_poses[i:i+4,:]
draw_camera(ax, camera_pose, cam_width, cam_height, cam_focal, cam_scale, camera_colors[i//4])
draw_camera_path(ax, inverse_camera_poses[:cpt+8,:], camera_colors)
draw_model(ax, model)
# Draw current camera pose
draw_camera(ax, inverse_camera_poses[cpt:cpt+4,:], cam_width, cam_height, cam_focal, cam_scale, camera_colors[cpt//4])
draw_model_frame(ax, w_M_o[:3,:3], frame_size)
center_viewport(ax, x_lim, y_lim, z_lim)
ax.set_xlabel('X (m)', labelpad=10)
ax.set_ylabel('Y (m)', labelpad=10)
ax.set_zlabel('Z (m)', labelpad=10)
ax.view_init(args.elev, args.azim)
# set_axes_equal(ax)
plt.title('Camera poses', pad=20)
fig.set_size_inches(fig.get_size_inches()*2)
plt.draw()
plt.savefig(os.path.join(output_folder, args.save_pattern.format(cpt//4)), dpi=args.save_dpi)
plt.clf()
plt.close()
else:
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.set_aspect("auto")
for i in range(0, inverse_camera_poses.shape[0], 4*pose_step):
camera_pose = inverse_camera_poses[i:i+4,:]
draw_camera(ax, camera_pose, cam_width, cam_height, cam_focal, cam_scale)
# Draw the last camera pose
for i in range(inverse_camera_poses.shape[0]-4, inverse_camera_poses.shape[0], 4):
camera_pose = inverse_camera_poses[i:i+4,:]
draw_camera(ax, camera_pose, cam_width, cam_height, cam_focal, cam_scale)
draw_camera_path(ax, inverse_camera_poses, camera_colors)
draw_model(ax, model)
draw_model_frame(ax, w_M_o[:3,:3], frame_size)
center_viewport(ax, x_lim, y_lim, z_lim, print_lim=True)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
def on_click(event):
azim, elev = ax.azim, ax.elev
print(f"azim: {azim} ; elev: {elev}")
cid = fig.canvas.mpl_connect('button_release_event', on_click)
ax.view_init(args.elev, args.azim)
if args.plot_cam_poses:
plot_poses(camera_poses)
ax.set_title('Camera poses')
plt.show()
if __name__ == "__main__":
main()
|