File: tutorial-dnn-object-detection-live.cpp

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (452 lines) | stat: -rw-r--r-- 18,641 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
//! \example tutorial-dnn-object-detection-live.cpp
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/detection/vpDetectorDNNOpenCV.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>

#if defined(HAVE_OPENCV_VIDEOIO)
#include <opencv2/videoio.hpp>
#endif

#ifdef VISP_HAVE_NLOHMANN_JSON
#include <nlohmann/json.hpp>
using json = nlohmann::json; //! json namespace shortcut
#endif

typedef enum
{
  DETECTION_CONTAINER_MAP = 0,
  DETECTION_CONTAINER_VECTOR = 1,
  DETECTION_CONTAINER_BOTH = 2,
  DETECTION_CONTAINER_COUNT = 3
} ChosenDetectionContainer;

std::string chosenDetectionContainerToString(const ChosenDetectionContainer &choice)
{
  switch (choice) {
  case DETECTION_CONTAINER_MAP:
    return "map";
  case DETECTION_CONTAINER_VECTOR:
    return "vector";
  case DETECTION_CONTAINER_BOTH:
    return "both";
  default:
    break;
  }
  return "unknown";
}

ChosenDetectionContainer chosenDetectionContainerFromString(const std::string &choiceStr)
{
  ChosenDetectionContainer choice(DETECTION_CONTAINER_COUNT);
  bool hasFoundMatch = false;
  for (unsigned int i = 0; i < DETECTION_CONTAINER_COUNT && !hasFoundMatch; i++) {
    ChosenDetectionContainer candidate = (ChosenDetectionContainer)i;
    hasFoundMatch = (chosenDetectionContainerToString(candidate) == vpIoTools::toLowerCase(choiceStr));
    if (hasFoundMatch) {
      choice = candidate;
    }
  }
  return choice;
}

std::string getAvailableDetectionContainer()
{
  std::string availableContainers("< ");
  for (unsigned int i = 0; i < DETECTION_CONTAINER_COUNT - 1; i++) {
    std::string name = chosenDetectionContainerToString((ChosenDetectionContainer)i);
    availableContainers += name + " , ";
  }
  availableContainers +=
    chosenDetectionContainerToString((ChosenDetectionContainer)(DETECTION_CONTAINER_COUNT - 1)) + " >";
  return availableContainers;
}

int main(int argc, const char *argv [])
{
#if defined(HAVE_OPENCV_DNN) && defined(HAVE_OPENCV_VIDEOIO) && (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_17)
  try {
    std::string opt_device("0");
    //! [OpenCV DNN face detector]
    std::string opt_dnn_model = "opencv_face_detector_uint8.pb";
    std::string opt_dnn_config = "opencv_face_detector.pbtxt";
    std::string opt_dnn_framework = "none";
    std::string opt_dnn_label_file = "";
    vpDetectorDNNOpenCV::DNNResultsParsingType opt_dnn_type = vpDetectorDNNOpenCV::RESNET_10;
    //! [OpenCV DNN face detector]
    int opt_dnn_width = 300, opt_dnn_height = 300;
    double opt_dnn_meanR = 104.0, opt_dnn_meanG = 177.0, opt_dnn_meanB = 123.0;
    double opt_dnn_scale_factor = 1.0;
    bool opt_dnn_swapRB = false;
    bool opt_step_by_step = false;
    float opt_dnn_confThresh = 0.5f;
    float opt_dnn_nmsThresh = 0.4f;
    double opt_dnn_filterThresh = 0.25;
    ChosenDetectionContainer opt_dnn_containerType = DETECTION_CONTAINER_MAP;
    bool opt_verbose = false;
    std::string opt_input_json = "";
    std::string opt_output_json = "";

    for (int i = 1; i < argc; i++) {
      if (std::string(argv[i]) == "--device" && i + 1 < argc) {
        opt_device = std::string(argv[++i]);
      }
      else if (std::string(argv[i]) == "--step-by-step") {
        opt_step_by_step = true;
      }
      else if (std::string(argv[i]) == "--model" && i + 1 < argc) {
        opt_dnn_model = std::string(argv[++i]);
      }
      else if (std::string(argv[i]) == "--type" && i + 1 < argc) {
        opt_dnn_type = vpDetectorDNNOpenCV::dnnResultsParsingTypeFromString(std::string(argv[++i]));
      }
      else if (std::string(argv[i]) == "--config" && i + 1 < argc) {
        opt_dnn_config = std::string(argv[++i]);
        if (opt_dnn_config.find("none") != std::string::npos) {
          opt_dnn_config = std::string();
        }
      }
      else if (std::string(argv[i]) == "--framework" && i + 1 < argc) {
        opt_dnn_framework = std::string(argv[++i]);
        if (opt_dnn_framework.find("none") != std::string::npos) {
          opt_dnn_framework = std::string();
        }
      }
      else if (std::string(argv[i]) == "--width" && i + 1 < argc) {
        opt_dnn_width = atoi(argv[++i]);
      }
      else if (std::string(argv[i]) == "--height" && i + 1 < argc) {
        opt_dnn_height = atoi(argv[++i]);
      }
      else if (std::string(argv[i]) == "--mean" && i + 3 < argc) {
        opt_dnn_meanR = atof(argv[++i]);
        opt_dnn_meanG = atof(argv[++i]);
        opt_dnn_meanB = atof(argv[++i]);
      }
      else if (std::string(argv[i]) == "--scale" && i + 1 < argc) {
        opt_dnn_scale_factor = atof(argv[++i]);
      }
      else if (std::string(argv[i]) == "--swapRB") {
        opt_dnn_swapRB = true;
      }
      else if (std::string(argv[i]) == "--confThresh" && i + 1 < argc) {
        opt_dnn_confThresh = (float)atof(argv[++i]);
      }
      else if (std::string(argv[i]) == "--nmsThresh" && i + 1 < argc) {
        opt_dnn_nmsThresh = (float)atof(argv[++i]);
      }
      else if (std::string(argv[i]) == "--filterThresh" && i + 1 < argc) {
        opt_dnn_filterThresh = atof(argv[++i]);
      }
      else if (std::string(argv[i]) == "--labels" && i + 1 < argc) {
        opt_dnn_label_file = std::string(argv[++i]);
      }
      else if (std::string(argv[i]) == "--container" && i + 1 < argc) {
        opt_dnn_containerType = chosenDetectionContainerFromString(std::string(argv[++i]));
      }
      else if (std::string(argv[i]) == "--input-json" && i + 1 < argc) {
        opt_input_json = std::string(std::string(argv[++i]));
      }
      else if (std::string(argv[i]) == "--output-json" && i + 1 < argc) {
        opt_output_json = std::string(std::string(argv[++i]));
      }
      else if (std::string(argv[i]) == "--verbose" || std::string(argv[i]) == "-v") {
        opt_verbose = true;
      }
      else if (std::string(argv[i]) == "--help" || std::string(argv[i]) == "-h") {
        std::cout << "\nSYNOPSIS " << std::endl
          << argv[0] << " [--device <video>]"
          << " [--model <dnn weights file>]"
          << " [--type <dnn type>]"
          << " [--config <dnn config file]"
          << " [--framework <name>]"
          << " [--width <blob width>] [--height <blob height>]"
          << " [--mean <meanR meanG meanB>]"
          << " [--scale <scale factor>]"
          << " [--swapRB]"
          << " [--confThresh <threshold>]"
          << " [--nmsThresh <threshold>]"
          << " [--filterThresh <threshold>]"
          << " [--labels <file>]"
          << " [--container <type>]"
          << " [--input-json <path_to_input_json>]"
          << " [--output-json <path_to_output_json>]"
          << " [--step-by-step]"
          << " [--verbose, -v]"
          << " [--help, -h]" << std::endl;
        std::cout << "\nOPTIONS " << std::endl
          << "  --device <video>" << std::endl
          << "      Camera device number or video name used to stream images." << std::endl
          << "      To use the first camera found on the bus set 0. On Ubuntu setting 0" << std::endl
          << "      will use /dev/video0 device. To use a video simply put the name of" << std::endl
          << "      the video, like \"path/my-video.mp4\" or \"path/image-%04d.png\"" << std::endl
          << "      if your video is a sequence of images." << std::endl
          << "      Default: " << opt_device << std::endl
          << std::endl
          << "  --model <dnn weights file>" << std::endl
          << "      Path to dnn network trained weights." << std::endl
          << "      Default: " << opt_dnn_model << std::endl
          << std::endl
          << "  --type <dnn type>" << std::endl
          << "      Type of dnn network. Admissible values are in " << std::endl
          << "      " << vpDetectorDNNOpenCV::getAvailableDnnResultsParsingTypes() << std::endl
          << "      Default: " << opt_dnn_type << std::endl
          << std::endl
          << "  --config <dnn config file>" << std::endl
          << "      Path to dnn network config file or \"none\" not to use one. " << std::endl
          << "      Default: " << opt_dnn_config << std::endl
          << std::endl
          << "  --framework <name>" << std::endl
          << "      Framework name or \"none\" not to specify one. " << std::endl
          << "      Default: " << opt_dnn_framework << std::endl
          << std::endl
          << "  --width <blob width>" << std::endl
          << "      Input images will be resized to this width. " << std::endl
          << "      Default: " << opt_dnn_width << std::endl
          << std::endl
          << "  --height <blob height>" << std::endl
          << "      Input images will be resized to this height. " << std::endl
          << "      Default: " << opt_dnn_height << std::endl
          << std::endl
          << "  --mean <meanR meanG meanB>" << std::endl
          << "      Mean RGB subtraction values. " << std::endl
          << "      Default: " << opt_dnn_meanR << " " << opt_dnn_meanG << " " << opt_dnn_meanB << std::endl
          << std::endl
          << "  --scale <scale factor>" << std::endl
          << "      Scale factor used to normalize the range of pixel values. " << std::endl
          << "      Default: " << opt_dnn_scale_factor << std::endl
          << std::endl
          << "  --swapRB" << std::endl
          << "      When used this option allows to swap Red and Blue channels. " << std::endl
          << std::endl
          << "  --confThresh <threshold>" << std::endl
          << "      Confidence threshold. " << std::endl
          << "      Default: " << opt_dnn_confThresh << std::endl
          << std::endl
          << "  --nmsThresh <threshold>" << std::endl
          << "      Non maximum suppression threshold. " << std::endl
          << "      Default: " << opt_dnn_nmsThresh << std::endl
          << std::endl
          << "  --filterThresh <threshold >" << std::endl
          << "      Filter threshold. Set 0. to disable." << std::endl
          << "      Default: " << opt_dnn_filterThresh << std::endl
          << std::endl
          << "  --labels <file>" << std::endl
          << "      Path to label file either in txt or yaml format. Keep empty if unknown." << std::endl
          << "      Default: \"" << opt_dnn_label_file << "\"" << std::endl
          << std::endl
          << "  --container <type>" << std::endl
          << "      Container type in " << getAvailableDetectionContainer() << std::endl
          << "      Default: " << chosenDetectionContainerToString(opt_dnn_containerType) << std::endl
          << std::endl
          << "  --input-json <path_to_input_json>" << std::endl
          << "      Input JSON file used to configure the DNN. If set, the other arguments will be used to override the values set in the json file." << std::endl
          << "      Default: empty" << std::endl
          << std::endl
          << "  --output-json <type>" << std::endl
          << "      Output JSON file where will be saved the DNN configuration. If empty, does not save the configuration." << std::endl
          << "      Default: empty" << std::endl
          << std::endl
          << "  --step-by-step" << std::endl
          << "      Enable step by step mode, waiting for a user click to process next image." << std::endl
          << std::endl
          << "  --verbose, -v" << std::endl
          << "      Enable verbose mode." << std::endl
          << std::endl
          << "  --help, -h" << std::endl
          << "      Display this helper message." << std::endl
          << std::endl;
        return EXIT_SUCCESS;
      }
    }

    std::cout << "Video device         : " << opt_device << std::endl;
    std::cout << "Label file (optional): " << (opt_dnn_label_file.empty() ? "None" : opt_dnn_label_file) << std::endl;

    cv::VideoCapture capture;
    bool hasCaptureOpeningSucceeded;
    if (vpMath::isNumber(opt_device)) {
      hasCaptureOpeningSucceeded = capture.open(std::atoi(opt_device.c_str()));
    }
    else {
      hasCaptureOpeningSucceeded = capture.open(opt_device);
    }
    if (!hasCaptureOpeningSucceeded) {
      std::cout << "Capture from camera: " << opt_device << " didn't work" << std::endl;
      return EXIT_FAILURE;
    }

    vpImage<vpRGBa> I;
#if defined(VISP_HAVE_X11)
    vpDisplayX d;
#elif defined(VISP_HAVE_GDI)
    vpDisplayGDI d;
#elif defined(HAVE_OPENCV_HIGHGUI)
    vpDisplayOpenCV d;
#endif
    d.setDownScalingFactor(vpDisplay::SCALE_AUTO);

    if (!opt_dnn_label_file.empty() && !vpIoTools::checkFilename(opt_dnn_label_file)) {
      throw(vpException(vpException::fatalError,
                        "The file containing the classes labels \"" + opt_dnn_label_file + "\" does not exist !"));
    }

    vpDetectorDNNOpenCV dnn;
#ifdef VISP_HAVE_NLOHMANN_JSON
    if (!opt_input_json.empty()) {
      //! [DNN json]
      dnn.initFromJSON(opt_input_json);
      //! [DNN json]
    }
#else
    if (!opt_input_json.empty()) {
      std::cerr << "Error: NLOHMANN JSON library is not installed, please install it following ViSP documentation to configure the vpDetectorDNNOpenCV from a JSON file." << std::endl;
      return EXIT_FAILURE;
    }
#endif
    else {
      //! [DNN params]
      vpDetectorDNNOpenCV::NetConfig netConfig(opt_dnn_confThresh, opt_dnn_nmsThresh, opt_dnn_label_file
        , cv::Size(opt_dnn_width, opt_dnn_height), opt_dnn_filterThresh, cv::Scalar(opt_dnn_meanR, opt_dnn_meanG, opt_dnn_meanB)
        , opt_dnn_scale_factor, opt_dnn_swapRB, opt_dnn_type
        , opt_dnn_model, opt_dnn_config, opt_dnn_framework
      );
      dnn.setNetConfig(netConfig);
      //! [DNN params]
    }

    std::cout << dnn.getNetConfig() << std::endl;

#ifdef VISP_HAVE_NLOHMANN_JSON
    if (!opt_output_json.empty()) {
      dnn.saveConfigurationInJSON(opt_output_json);
    }
#else
    if (!opt_output_json.empty()) {
      std::cerr << "Error: NLOHMANN JSON library is not installed, please install it following ViSP documentation to save the configuration in a JSON file." << std::endl;
    }
#endif

    cv::Mat frame;
    while (true) {
      capture >> frame;
      if (frame.empty())
        break;

      if (I.getSize() == 0) {
        vpImageConvert::convert(frame, I);
        d.init(I);
        vpDisplay::setTitle(I, "DNN object detection");
        if (opt_verbose) {
          std::cout << "Process image: " << I.getWidth() << " x " << I.getHeight() << std::endl;
        }
      }
      else {
        vpImageConvert::convert(frame, I);
      }
      if (opt_verbose) {
        std::cout << "Process new image" << std::endl;
      }

      vpDisplay::display(I);

      if (opt_dnn_containerType == DETECTION_CONTAINER_MAP || opt_dnn_containerType == DETECTION_CONTAINER_BOTH) {
        double t = vpTime::measureTimeMs();
        //! [DNN object detection map mode]
        std::map<std::string, std::vector<vpDetectorDNNOpenCV::DetectedFeatures2D> > detections;
        dnn.detect(frame, detections);
        //! [DNN object detection map mode]
        t = vpTime::measureTimeMs() - t;

        //! [DNN class ids and confidences map mode]
        for (auto key_val : detections) {
          if (opt_verbose) {
            std::cout << "  Class name      : " << key_val.first << std::endl;
          }
          for (vpDetectorDNNOpenCV::DetectedFeatures2D detection : key_val.second) {
            if (opt_verbose) {
              std::cout << "  Bounding box    : " << detection.getBoundingBox() << std::endl;
              std::cout << "  Class Id        : " << detection.getClassId() << std::endl;
              if (detection.getClassName())
                std::cout << "  Class name      : " << detection.getClassName().value() << std::endl;
              std::cout << "  Confidence score: " << detection.getConfidenceScore() << std::endl;
            }
            detection.display(I);
          }
        }
        //! [DNN class ids and confidences map mode]

        std::ostringstream oss_map;
        oss_map << "Detection time (map): " << t << " ms";
        if (opt_verbose) {
          // Displaying timing result in console
          std::cout << "  " << oss_map.str() << std::endl;
        }
        // Displaying timing result on the image
        vpDisplay::displayText(I, 60, 20, oss_map.str(), vpColor::red);
      }

      if (opt_dnn_containerType == DETECTION_CONTAINER_VECTOR || opt_dnn_containerType == DETECTION_CONTAINER_BOTH) {
        double t_vector = vpTime::measureTimeMs();
        //! [DNN object detection vector mode]
        std::vector<vpDetectorDNNOpenCV::DetectedFeatures2D> detections_vec;
        dnn.detect(frame, detections_vec);
        //! [DNN object detection vector mode]
        t_vector = vpTime::measureTimeMs() - t_vector;

        //! [DNN class ids and confidences vector mode]
        for (auto detection : detections_vec) {
          if (opt_verbose) {
            std::cout << "  Bounding box    : " << detection.getBoundingBox() << std::endl;
            std::cout << "  Class Id        : " << detection.getClassId() << std::endl;
            std::optional<std::string> classname_opt = detection.getClassName();
            std::cout << "  Class name      : " << (classname_opt ? *classname_opt : "Not known") << std::endl;
            std::cout << "  Confidence score: " << detection.getConfidenceScore() << std::endl;
          }
          detection.display(I);
        }
        //! [DNN class ids and confidences vector mode]

        std::ostringstream oss_vec;
        oss_vec << "Detection time (vector): " << t_vector << " ms";
        if (opt_verbose) {
          // Displaying timing result in console
          std::cout << "  " << oss_vec.str() << std::endl;
        }
        // Displaying timing result on the image
        vpDisplay::displayText(I, 80, 20, oss_vec.str(), vpColor::red);
      }

      // // UI display
      if (opt_step_by_step) {
        vpDisplay::displayText(I, 20, 20, "Left click to display next image", vpColor::red);
      }
      vpDisplay::displayText(I, 40, 20, "Right click to quit", vpColor::red);

      vpDisplay::flush(I);
      vpMouseButton::vpMouseButtonType button;

      if (vpDisplay::getClick(I, button, opt_step_by_step)) {
        if (button == vpMouseButton::button1) {
          // Left click => next image
          continue;
        }
        else if (button == vpMouseButton::button3) {
          // Right click => stop the program
          break;
        }
      }
    }

  }
  catch (const vpException &e) {
    std::cout << e.what() << std::endl;
  }
#else
  (void)argc;
  (void)argv;
#endif
  return EXIT_SUCCESS;
}