1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
|
// This tutorial uses NVIDIA TensorRT inference framework to perform object detection.
// The object detection model is provided as a `.onnx` file. The model will be parsed
// and a GPU Inference Engine (GIE) will be created if it doesn't exist. This GIE is
// specific to the platform you're using.
//
// This tutorial was tested on NVIDIA Jetson TX2.
//
// The object detection model used is `SSD_Mobilenet V1` (Single Shot MultiBox Detector)
// pre-trained on PASCAL VOC dataset. It can detect 20 classes.
// For more information about the model, see this link:
//
// https://github.com/qfgaohao/pytorch-ssd
//
#include <iostream>
#include <visp3/core/vpConfig.h>
#if defined(VISP_HAVE_TENSORRT) && defined(VISP_HAVE_OPENCV)
#if defined(HAVE_OPENCV_CUDEV) && defined(HAVE_OPENCV_CUDAWARPING) && defined(HAVE_OPENCV_CUDAARITHM) && \
defined(HAVE_OPENCV_DNN) && defined(HAVE_OPENCV_VIDEOIO)
#include <visp3/core/vpImageConvert.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/gui/vpDisplayX.h>
#include <opencv2/videoio.hpp>
//! [OpenCV CUDA header files]
#include <opencv2/core/cuda.hpp>
#include <opencv2/cudaarithm.hpp>
#include <opencv2/cudawarping.hpp>
#include <opencv2/dnn.hpp>
//! [OpenCV CUDA header files]
//! [CUDA header files]
#include <cuda_runtime_api.h>
//! [CUDA header files]
//! [TRT header files]
#include <NvInfer.h>
#include <NvOnnxParser.h>
//! [TRT header files]
#include <sys/stat.h>
//! [Preprocess image]
void preprocessImage(cv::Mat &img, float *gpu_input, const nvinfer1::Dims &dims, float meanR, float meanG, float meanB)
{
if (img.empty()) {
std::cerr << "Image is empty." << std::endl;
return;
}
cv::cuda::GpuMat gpu_frame;
// Upload image to GPU
gpu_frame.upload(img);
// input_dims is in NxCxHxW format.
auto input_width = dims.d[3];
auto input_height = dims.d[2];
auto channels = dims.d[1];
auto input_size = cv::Size(input_width, input_height);
// Resize
cv::cuda::GpuMat resized;
cv::cuda::resize(gpu_frame, resized, input_size, 0, 0, cv::INTER_NEAREST);
// Normalize
cv::cuda::GpuMat flt_image;
resized.convertTo(flt_image, CV_32FC3);
cv::cuda::subtract(flt_image, cv::Scalar(meanR, meanG, meanB), flt_image, cv::noArray(), -1);
cv::cuda::divide(flt_image, cv::Scalar(127.5f, 127.5f, 127.5f), flt_image, 1, -1);
// To tensor
std::vector<cv::cuda::GpuMat> chw;
for (int i = 0; i < channels; ++i)
chw.emplace_back(cv::cuda::GpuMat(input_size, CV_32FC1, gpu_input + i * input_width * input_height));
cv::cuda::split(flt_image, chw);
}
//! [Preprocess image]
//! [getSizeByDim function]
size_t getSizeByDim(const nvinfer1::Dims &dims)
{
size_t size = 1;
for (int i = 0; i < dims.nbDims; ++i)
size *= dims.d[i];
return size;
}
//! [getSizeByDim function]
//! [PostProcess results]
std::vector<cv::Rect> postprocessResults(std::vector<void *> buffers, const std::vector<nvinfer1::Dims> &output_dims,
int batch_size, int image_width, int image_height, float confThresh,
float nmsThresh, std::vector<int> &classIds)
{
// private variables of vpDetectorDNN
std::vector<cv::Rect> m_boxes, m_boxesNMS;
std::vector<int> m_classIds;
std::vector<float> m_confidences;
std::vector<int> m_indices;
// copy results from GPU to CPU
std::vector<std::vector<float> > cpu_outputs;
for (size_t i = 0; i < output_dims.size(); i++) {
cpu_outputs.push_back(std::vector<float>(getSizeByDim(output_dims[i]) * batch_size));
cudaMemcpy(cpu_outputs[i].data(), (float *)buffers[1 + i], cpu_outputs[i].size() * sizeof(float),
cudaMemcpyDeviceToHost);
}
// post process
int N = output_dims[0].d[1], C = output_dims[0].d[2]; // (1 x N x C format); N: Number of output detection boxes
// (fixed in the model), C: Number of classes.
for (int i = 0; i < N; i++) // for all N (boxes)
{
uint32_t maxClass = 0;
float maxScore = -1000.0f;
for (int j = 1; j < C; j++) // ignore background (classId = 0).
{
const float score = cpu_outputs[0][i * C + j];
if (score < confThresh)
continue;
if (score > maxScore) {
maxScore = score;
maxClass = j;
}
}
if (maxScore > confThresh) {
int left = (int)(cpu_outputs[1][4 * i] * image_width);
int top = (int)(cpu_outputs[1][4 * i + 1] * image_height);
int right = (int)(cpu_outputs[1][4 * i + 2] * image_width);
int bottom = (int)(cpu_outputs[1][4 * i + 3] * image_height);
int width = right - left + 1;
int height = bottom - top + 1;
m_boxes.push_back(cv::Rect(left, top, width, height));
m_classIds.push_back(maxClass);
m_confidences.push_back(maxScore);
}
}
cv::dnn::NMSBoxes(m_boxes, m_confidences, confThresh, nmsThresh, m_indices);
m_boxesNMS.resize(m_indices.size());
for (size_t i = 0; i < m_indices.size(); ++i) {
int idx = m_indices[i];
m_boxesNMS[i] = m_boxes[idx];
}
classIds = m_classIds; // Returning detected objects class Ids.
return m_boxesNMS;
}
//! [PostProcess results]
class Logger : public nvinfer1::ILogger
{
public:
void log(Severity severity, const char *msg) noexcept // override
{
if ((severity == Severity::kERROR) || (severity == Severity::kINTERNAL_ERROR) || (severity == Severity::kVERBOSE))
std::cout << msg << std::endl;
}
} gLogger;
// destroy TensoRT objects if something goes wrong
struct TRTDestroy
{
template <class T> void operator()(T *obj) const
{
if (obj)
obj->destroy();
}
};
template <class T> using TRTUniquePtr = std::unique_ptr<T, TRTDestroy>;
//! [ParseOnnxModel]
bool parseOnnxModel(const std::string &model_path, TRTUniquePtr<nvinfer1::ICudaEngine> &engine,
TRTUniquePtr<nvinfer1::IExecutionContext> &context)
//! [ParseOnnxModel]
{
// this section of code is from jetson-inference's `tensorNet`, to test if the GIE already exists.
char cache_prefix[FILENAME_MAX];
char cache_path[FILENAME_MAX];
snprintf(cache_prefix, FILENAME_MAX, "%s", model_path.c_str());
snprintf(cache_path, FILENAME_MAX, "%s.engine", cache_prefix);
std::cout << "attempting to open engine cache file " << cache_path << std::endl;
//! [ParseOnnxModel engine exists]
if (vpIoTools::checkFilename(cache_path)) {
char *engineStream = NULL;
size_t engineSize = 0;
// determine the file size of the engine
struct stat filestat;
stat(cache_path, &filestat);
engineSize = filestat.st_size;
// allocate memory to hold the engine
engineStream = (char *)malloc(engineSize);
// open the engine cache file from disk
FILE *cacheFile = NULL;
cacheFile = fopen(cache_path, "rb");
// read the serialized engine into memory
const size_t bytesRead = fread(engineStream, 1, engineSize, cacheFile);
if (bytesRead != engineSize) // Problem while deserializing.
{
std::cerr << "Error reading serialized engine into memory." << std::endl;
return false;
}
// close the plan cache
fclose(cacheFile);
// Recreate the inference runtime
TRTUniquePtr<nvinfer1::IRuntime> infer { nvinfer1::createInferRuntime(gLogger) };
engine.reset(infer->deserializeCudaEngine(engineStream, engineSize, NULL));
context.reset(engine->createExecutionContext());
return true;
}
//! [ParseOnnxModel engine exists]
//! [ParseOnnxModel engine does not exist]
else {
if (!vpIoTools::checkFilename(model_path)) {
std::cerr << "Could not parse ONNX model. File not found" << std::endl;
return false;
}
TRTUniquePtr<nvinfer1::IBuilder> builder { nvinfer1::createInferBuilder(gLogger) };
TRTUniquePtr<nvinfer1::INetworkDefinition> network {
builder->createNetworkV2(1U << (uint32_t)nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH) };
TRTUniquePtr<nvonnxparser::IParser> parser { nvonnxparser::createParser(*network, gLogger) };
// parse ONNX
if (!parser->parseFromFile(model_path.c_str(), static_cast<int>(nvinfer1::ILogger::Severity::kINFO))) {
std::cerr << "ERROR: could not parse the model." << std::endl;
return false;
}
TRTUniquePtr<nvinfer1::IBuilderConfig> config { builder->createBuilderConfig() };
// allow TRT to use up to 1GB of GPU memory for tactic selection
config->setMaxWorkspaceSize(32 << 20);
// use FP16 mode if possible
if (builder->platformHasFastFp16()) {
config->setFlag(nvinfer1::BuilderFlag::kFP16);
}
builder->setMaxBatchSize(1);
engine.reset(builder->buildEngineWithConfig(*network, *config));
context.reset(engine->createExecutionContext());
TRTUniquePtr<nvinfer1::IHostMemory> serMem { engine->serialize() };
if (!serMem) {
std::cout << "Failed to serialize CUDA engine." << std::endl;
return false;
}
const char *serData = (char *)serMem->data();
const size_t serSize = serMem->size();
// allocate memory to store the bitstream
char *engineMemory = (char *)malloc(serSize);
if (!engineMemory) {
std::cout << "Failed to allocate memory to store CUDA engine." << std::endl;
return false;
}
memcpy(engineMemory, serData, serSize);
// write the cache file
FILE *cacheFile = NULL;
cacheFile = fopen(cache_path, "wb");
fwrite(engineMemory, 1, serSize, cacheFile);
fclose(cacheFile);
return true;
}
//! [ParseOnnxModel engine does not exist]
}
int main(int argc, char **argv)
{
int opt_device = 0;
unsigned int opt_scale = 1;
std::string input = "";
std::string modelFile = vpIoTools::getViSPImagesDataPath() + "/dnn/object_detection/ssd-mobilenet.onnx";
std::string labelFile = vpIoTools::getViSPImagesDataPath() + "/dnn/object_detection/pascal-voc-labels.txt";
std::string config = "";
float meanR = 127.5f, meanG = 127.5f, meanB = 127.5f;
float confThresh = 0.5f;
float nmsThresh = 0.4f;
for (int i = 1; i < argc; i++) {
if (std::string(argv[i]) == "--device" && i + 1 < argc) {
opt_device = atoi(argv[i + 1]);
}
else if (std::string(argv[i]) == "--input" && i + 1 < argc) {
input = std::string(argv[i + 1]);
}
else if (std::string(argv[i]) == "--model" && i + 1 < argc) {
modelFile = std::string(argv[i + 1]);
}
else if (std::string(argv[i]) == "--config" && i + 1 < argc) {
config = std::string(argv[i + 1]);
}
else if (std::string(argv[i]) == "--input-scale" && i + 1 < argc) {
opt_scale = atoi(argv[i + 1]);
}
else if (std::string(argv[i]) == "--mean" && i + 3 < argc) {
meanR = atof(argv[i + 1]);
meanG = atof(argv[i + 2]);
meanB = atof(argv[i + 3]);
}
else if (std::string(argv[i]) == "--confThresh" && i + 1 < argc) {
confThresh = (float)atof(argv[i + 1]);
}
else if (std::string(argv[i]) == "--nmsThresh" && i + 1 < argc) {
nmsThresh = (float)atof(argv[i + 1]);
}
else if (std::string(argv[i]) == "--labels" && i + 1 < argc) {
labelFile = std::string(argv[i + 1]);
}
else if (std::string(argv[i]) == "--help" || std::string(argv[i]) == "-h") {
std::cout << argv[0]
<< " [--device <camera device number>] [--input <path to image or video>"
" (camera is used if input is empty)] [--model <path to net trained weights>]"
" [--config <path to net config file>]"
" [--input-scale <input scale factor>] [--mean <meanR meanG meanB>]"
" [--confThresh <confidence threshold>]"
" [--nmsThresh <NMS threshold>] [--labels <path to label file>]"
<< std::endl;
return EXIT_SUCCESS;
}
}
std::string model_path(modelFile);
int batch_size = 1;
std::vector<std::string> labels;
if (!labelFile.empty()) {
std::ifstream f_label(labelFile);
std::string line;
while (std::getline(f_label, line)) {
labels.push_back(line);
}
}
//! [Create GIE]
// Parse the model and initialize the engine and the context.
TRTUniquePtr<nvinfer1::ICudaEngine> engine { nullptr };
TRTUniquePtr<nvinfer1::IExecutionContext> context { nullptr };
if (!parseOnnxModel(model_path, engine, context)) // Problem parsing Onnx model
{
std::cout << "Make sure the model file exists. To see available models, plese visit: "
"\n\twww.github.com/lagadic/visp-images/dnn/object_detection/"
<< std::endl;
return EXIT_FAILURE;
}
//! [Create GIE]
std::vector<nvinfer1::Dims> input_dims;
std::vector<nvinfer1::Dims> output_dims;
std::vector<void *> buffers(engine->getNbBindings()); // buffers for input and output data.
//! [Get I/O dimensions]
for (int i = 0; i < engine->getNbBindings(); ++i) {
auto binding_size = getSizeByDim(engine->getBindingDimensions(i)) * batch_size * sizeof(float);
cudaMalloc(&buffers[i], binding_size);
if (engine->bindingIsInput(i)) {
input_dims.emplace_back(engine->getBindingDimensions(i));
}
else {
output_dims.emplace_back(engine->getBindingDimensions(i));
}
}
if (input_dims.empty() || output_dims.empty()) {
std::cerr << "Expect at least one input and one output for network" << std::endl;
return EXIT_FAILURE;
}
//! [Get I/O dimensions]
//! [OpenCV VideoCapture]
cv::VideoCapture capture;
if (input.empty()) {
capture.open(opt_device);
}
else {
capture.open(input);
}
if (!capture.isOpened()) { // check if we succeeded
std::cout << "Failed to open the camera" << std::endl;
return EXIT_FAILURE;
}
int cap_width = (int)capture.get(cv::CAP_PROP_FRAME_WIDTH);
int cap_height = (int)capture.get(cv::CAP_PROP_FRAME_HEIGHT);
capture.set(cv::CAP_PROP_FRAME_WIDTH, cap_width / opt_scale);
capture.set(cv::CAP_PROP_FRAME_HEIGHT, cap_height / opt_scale);
//! [OpenCV VideoCapture]
vpImage<vpRGBa> I;
cv::Mat frame;
capture >> frame;
if (input.empty()) {
int i = 0;
while ((i++ < 20) && !capture.read(frame)) {
}; // warm up camera by skiping unread frames
}
vpImageConvert::convert(frame, I);
int height = I.getHeight(), width = I.getWidth();
std::cout << "Image size: " << width << " x " << height << std::endl;
std::vector<cv::Rect> boxesNMS;
std::vector<int> classIds;
vpDisplayX d(I);
double start, stop;
//! [Main loop]
while (!vpDisplay::getClick(I, false)) {
// get frame.
capture >> frame;
vpImageConvert::convert(frame, I);
start = vpTime::measureTimeMs();
// preprocess
preprocessImage(frame, (float *)buffers[0], input_dims[0], meanR, meanG, meanB);
// inference.
context->enqueue(batch_size, buffers.data(), 0, nullptr);
// post-process
boxesNMS = postprocessResults(buffers, output_dims, batch_size, width, height, confThresh, nmsThresh, classIds);
stop = vpTime::measureTimeMs();
// display.
vpDisplay::display(I);
vpDisplay::displayText(I, 10, 10, std::to_string(stop - start), vpColor::red);
for (unsigned int i = 0; i < boxesNMS.size(); i++) {
vpDisplay::displayRectangle(I, vpRect(boxesNMS[i].x, boxesNMS[i].y, boxesNMS[i].width, boxesNMS[i].height),
vpColor::red, false, 2);
vpDisplay::displayText(I, boxesNMS[i].y - 10, boxesNMS[i].x, labels[classIds[i]], vpColor::red);
}
vpDisplay::flush(I);
}
//! [Main loop]
for (void *buf : buffers)
cudaFree(buf);
return EXIT_SUCCESS;
}
#else
int main()
{
std::cout << "OpenCV is not built with CUDA." << std::endl;
return EXIT_SUCCESS;
}
#endif
#else
int main()
{
std::cout << "ViSP is not built with TensorRT." << std::endl;
return EXIT_SUCCESS;
}
#endif
|