1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
|
#include <iostream>
// ViSP includes
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpException.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpImageConvert.h>
#include <visp3/core/vpImageDraw.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpTime.h>
#include <visp3/imgproc/vpCircleHoughTransform.h>
#include <visp3/imgproc/vpImgproc.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/io/vpVideoReader.h>
#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
#include "drawingHelpers.h"
//! [Enum input]
typedef enum TypeInputImage
{
FULL_DISKS = 0,
HALF_DISKS = 1,
QUARTER_DISKS = 2,
USER_IMG = 3
}TypeInputImage;
std::string typeInputImageToString(const TypeInputImage &type)
{
std::string name;
switch (type) {
case FULL_DISKS:
name = "full_disks";
break;
case HALF_DISKS:
name = "half_disks";
break;
case QUARTER_DISKS:
name = "quarter_disks";
break;
case USER_IMG:
name = "path/to/your/image";
}
return name;
}
//! [Enum input]
TypeInputImage typeInputImageFromString(const std::string &name)
{
TypeInputImage type(USER_IMG);
bool hasFound(false);
for (unsigned int id = 0; id < USER_IMG && !hasFound; id++) {
TypeInputImage candidate = (TypeInputImage)id;
if (name == typeInputImageToString(candidate)) {
type = candidate;
hasFound = true;
}
}
return type;
}
std::string getAvailableTypeInputImage(const std::string &prefix = "<", const std::string &sep = " , ", const std::string &suffix = ">")
{
std::string list(prefix);
for (unsigned int id = 0; id < USER_IMG; id++) {
list += typeInputImageToString((TypeInputImage)id) + sep;
}
list += typeInputImageToString(USER_IMG) + suffix;
return list;
}
//! [Draw disks]
void
drawDisk(vpImage<unsigned char> &I, const vpImagePoint ¢er, const unsigned int &radius,
const unsigned int &borderColor, const unsigned int &fillingColor, const unsigned int &thickness, const unsigned int &bckg)
//! [Draw disks]
{
vpImageDraw::drawCircle(I, center, radius, borderColor, thickness);
vp::floodFill(I,
center,
bckg,
fillingColor,
vpImageMorphology::CONNEXITY_4
);
}
//! [Draw synthetic]
vpImage<unsigned char>
generateImage(const TypeInputImage &inputType)
//! [Draw synthetic]
{
// // Image dimensions and background
const unsigned int width = 640;
const unsigned int height = 480;
const unsigned int bckg = 0;
// // Disks parameters
const unsigned int circleColor = 128;
const unsigned int circleRadius = 50;
const unsigned int circleThickness = 1;
// // Disks position when full circles
const double topFull = height / 4;
const double bottomFull = 3 * height / 4;
const double leftFull = width / 4;
const double rightFull = 3 * width / 4;
// // Disks position when Half of circles
const double topHalf = 1; // m_centerThresh(25) , m_radiusBinSize(10) , m_radiusRatioThresh(50) , m_mergingDistanceThresh(15) , m_mergingRadiusDiffThresh(1.5 * (double) m_radiusBinSize)
const double bottomHalf = height - 1;
const double leftHalf = width / 4;
const double rightHalf = 3 * width / 4;
// // Disks position when Quarter of circles
const double topQuarter = 1; // m_centerThresh(15) , m_radiusBinSize(10) , m_radiusRatioThresh(50) , m_mergingDistanceThresh(15) , m_mergingRadiusDiffThresh(1.5 * (double) m_radiusBinSize)
const double bottomQuarter = height - 1;
const double leftQuarter = 1;
const double rightQuarter = width - 1;
vpImage<unsigned char> I_src(height, width, bckg);
// // Selecting position of the disks depending on their visibility
double top, left, bottom, right;
switch (inputType) {
case FULL_DISKS:
top = topFull;
left = leftFull;
bottom = bottomFull;
right = rightFull;
break;
case HALF_DISKS:
top = topHalf;
left = leftHalf;
bottom = bottomHalf;
right = rightHalf;
break;
case QUARTER_DISKS:
top = topQuarter;
left = leftQuarter;
bottom = bottomQuarter;
right = rightQuarter;
break;
default:
throw(vpException(vpException::badValue, "Using other type of input than the one that has been implemented to generate disks."));
break;
}
drawDisk(I_src, vpImagePoint(top, left), circleRadius, circleColor, circleColor, circleThickness, bckg);
drawDisk(I_src, vpImagePoint(top, left), circleRadius / 2, circleColor / 2, circleColor / 2, circleThickness, circleColor);
drawDisk(I_src, vpImagePoint(bottom, left), circleRadius, circleColor, circleColor, circleThickness, bckg);
drawDisk(I_src, vpImagePoint(bottom, left), circleRadius / 2, circleColor / 2, circleColor / 2, circleThickness, circleColor);
drawDisk(I_src, vpImagePoint(top, right), circleRadius, circleColor, circleColor, circleThickness, bckg);
drawDisk(I_src, vpImagePoint(top, right), circleRadius / 2, circleColor / 2, circleColor / 2, circleThickness, circleColor);
drawDisk(I_src, vpImagePoint(bottom, right), circleRadius, circleColor, circleColor, circleThickness, bckg);
drawDisk(I_src, vpImagePoint(bottom, right), circleRadius / 2, circleColor / 2, circleColor / 2, circleThickness, circleColor);
std::cout << "Done drawing" << std::endl << std::flush;
return I_src;
}
bool test_detection(const vpImage<unsigned char> &I_src, vpCircleHoughTransform &detector, const int &nbCirclesToDetect, const bool &blockingMode, const bool &displayCanny)
{
double t0 = vpTime::measureTimeMicros();
//! [Run detection]
std::vector<vpImageCircle> detectedCircles = detector.detect(I_src, nbCirclesToDetect);
//! [Run detection]
double tF = vpTime::measureTimeMicros();
std::cout << "Process time = " << (tF - t0) * 0.001 << "ms" << std::endl << std::flush;
vpImage<vpRGBa> I_disp;
vpImageConvert::convert(I_src, I_disp);
unsigned int id = 0;
std::vector<vpColor> v_colors = { vpColor::red, vpColor::purple, vpColor::orange, vpColor::yellow, vpColor::blue };
unsigned int idColor = 0;
//! [Iterate detections]
for (auto circleCandidate : detectedCircles) {
vpImageDraw::drawCircle(I_disp, circleCandidate, v_colors[idColor], 2);
std::cout << "Circle #" << id << ":" << std::endl;
std::cout << "\tCenter: (" << circleCandidate.getCenter() << ")" << std::endl;
std::cout << "\tRadius: (" << circleCandidate.getRadius() << ")" << std::endl;
id++;
idColor = (idColor + 1) % v_colors.size();
}
//! [Iterate detections]
if (displayCanny) {
vpImage<unsigned char> edgeMap = detector.getEdgeMap();
drawingHelpers::display(edgeMap, "Edge map", true);
}
return drawingHelpers::display(I_disp, "Detection results", blockingMode);
}
int main(int argc, char **argv)
{
const std::string def_input(typeInputImageToString(FULL_DISKS));
const std::string def_jsonFilePath = std::string("");
const int def_nbCirclesToDetect = -1;
const int def_gaussianKernelSize = 5;
const float def_gaussianSigma = 1.f;
const int def_sobelKernelSize = 3;
#ifdef HAVE_OPENCV_IMGPROC
const float def_lowerCannyThresh = 50.f;
const float def_upperCannyThresh = 150.f;
#else
const float def_lowerCannyThresh = 8.f;
const float def_upperCannyThresh = 25.f;
#endif
const int def_nbEdgeFilteringIter = 2;
const std::pair<int, int> def_centerXlimits = std::pair<int, int>(0, 640);
const std::pair<int, int> def_centerYlimits = std::pair<int, int>(0, 480);
const unsigned int def_minRadius = 0;
const unsigned int def_maxRadius = 1000;
const int def_dilatationRepet = 1;
const float def_centerThresh = -1.f;
const float def_radiusThreshRatio = -1.f;
const float def_circlePerfectness = 0.85f;
const float def_centerDistanceThresh = 15.f;
const float def_radiusDifferenceThresh = 15.f;
std::string opt_input(def_input);
std::string opt_jsonFilePath = def_jsonFilePath;
int opt_nbCirclesToDetect = def_nbCirclesToDetect;
int opt_gaussianKernelSize = def_gaussianKernelSize;
float opt_gaussianSigma = def_gaussianSigma;
int opt_sobelKernelSize = def_sobelKernelSize;
float opt_lowerCannyThresh = def_lowerCannyThresh;
float opt_upperCannyThresh = def_upperCannyThresh;
int opt_nbEdgeFilteringIter = def_nbEdgeFilteringIter;
std::pair<int, int> opt_centerXlimits = def_centerXlimits;
std::pair<int, int> opt_centerYlimits = def_centerYlimits;
unsigned int opt_minRadius = def_minRadius;
unsigned int opt_maxRadius = def_maxRadius;
int opt_dilatationRepet = def_dilatationRepet;
float opt_centerThresh = def_centerThresh;
float opt_radiusThreshRatio = def_radiusThreshRatio;
float opt_circlePerfectness = def_circlePerfectness;
float opt_centerDistanceThresh = def_centerDistanceThresh;
float opt_radiusDifferenceThresh = def_radiusDifferenceThresh;
bool opt_displayCanny = false;
for (int i = 1; i < argc; i++) {
std::string argName(argv[i]);
if (argName == "--input" && i + 1 < argc) {
opt_input = std::string(argv[i + 1]);
i++;
}
#ifdef VISP_HAVE_NLOHMANN_JSON
else if (argName == "--config" && i + 1 < argc) {
opt_jsonFilePath = std::string(argv[i + 1]);
i++;
}
#endif
else if (argName == "--nb-circles" && i + 1 < argc) {
opt_nbCirclesToDetect = atoi(argv[i + 1]);
i++;
}
else if (argName == "--gaussian-kernel" && i + 1 < argc) {
opt_gaussianKernelSize = atoi(argv[i + 1]);
i++;
}
else if (argName == "--gaussian-sigma" && i + 1 < argc) {
opt_gaussianSigma = static_cast<float>(atof(argv[i + 1]));
i++;
}
else if (argName == "--sobel-kernel" && i + 1 < argc) {
opt_sobelKernelSize = atoi(argv[i + 1]);
i++;
}
else if (argName == "--canny-thresh" && i + 2 < argc) {
opt_lowerCannyThresh = static_cast<float>(atof(argv[i + 1]));
opt_upperCannyThresh = static_cast<float>(atof(argv[i + 2]));
i += 2;
}
else if (argName == "--edge-filter" && i + 1 < argc) {
opt_nbEdgeFilteringIter = atoi(argv[i + 1]);
i++;
}
else if (argName == "--dilatation-repet" && i + 1 < argc) {
opt_dilatationRepet = atoi(argv[i + 1]);
i++;
}
else if (argName == "--radius-limits" && i + 2 < argc) {
opt_minRadius = atoi(argv[i + 1]);
opt_maxRadius = atoi(argv[i + 2]);
i += 2;
}
else if (argName == "--center-thresh" && i + 1 < argc) {
opt_centerThresh = static_cast<float>(atof(argv[i + 1]));
i++;
}
else if (argName == "--center-xlim" && i + 2 < argc) {
opt_centerXlimits = std::pair<int, int>(atoi(argv[i + 1]), atoi(argv[i + 2]));
i += 2;
}
else if (argName == "--center-ylim" && i + 2 < argc) {
opt_centerYlimits = std::pair<int, int>(atoi(argv[i + 1]), atoi(argv[i + 2]));
i += 2;
}
else if (argName == "--radius-thresh" && i + 1 < argc) {
opt_radiusThreshRatio = static_cast<float>(atof(argv[i + 1]));
i++;
}
else if (argName == "--circle-perfectness" && i + 1 < argc) {
opt_circlePerfectness = static_cast<float>(atof(argv[i + 1]));
i++;
}
else if (argName == "--merging-thresh" && i + 2 < argc) {
opt_centerDistanceThresh = static_cast<float>(atof(argv[i + 1]));
opt_radiusDifferenceThresh = static_cast<float>(atof(argv[i + 2]));
i += 2;
}
else if (argName == "--display-edge-map") {
opt_displayCanny = true;
}
else if (argName == "--help" || argName == "-h") {
std::cout << "NAME" << std::endl;
std::cout << "\t" << argv[0] << " Test program for the home-made Hough Circle Detection algorithm" << std::endl
<< std::endl;
std::cout << "SYNOPSIS" << std::endl;
std::cout << "\t" << argv[0]
<< "\t [--input " << getAvailableTypeInputImage() << "]" << std::endl
#ifdef VISP_HAVE_NLOHMANN_JSON
<< "\t [--config <path/to/json/file>] (default: " << (def_jsonFilePath.empty() ? "unused" : def_jsonFilePath) << ")" << std::endl
#endif
<< "\t [--nb-circles <number-circles-to-detect>] (default: " << def_nbCirclesToDetect << ")" << std::endl
<< "\t [--gaussian-kernel <kernel-size>] (default: " << def_gaussianKernelSize << ")" << std::endl
<< "\t [--gaussian-sigma <stddev>] (default: " << def_gaussianSigma << ")" << std::endl
<< "\t [--sobel-kernel <kernel-size>] (default: " << def_sobelKernelSize << ")" << std::endl
<< "\t [--canny-thresh <lower-canny-thresh upper-canny-thresh>] (default: " << def_lowerCannyThresh << " ; " << def_upperCannyThresh << ")" << std::endl
<< "\t [--edge-filter <nb-iter>] (default: " << def_nbEdgeFilteringIter << ")" << std::endl
<< "\t [--radius-limits <radius-min> <radius-max>] (default: min = " << def_minRadius << ", max = " << def_maxRadius << ")" << std::endl
<< "\t [--dilatation-repet <nb-repetitions>] (default: " << def_dilatationRepet << ")" << std::endl
<< "\t [--center-thresh <center-detection-threshold>] (default: " << (def_centerThresh < 0 ? "auto" : std::to_string(def_centerThresh)) << ")" << std::endl
<< "\t [--center-xlim <center-horizontal-min center-horizontal-max>] (default: " << def_centerXlimits.first << " , " << def_centerXlimits.second << ")" << std::endl
<< "\t [--center-ylim <center-vertical-min center-vertical-max>] (default: " << def_centerYlimits.first << " , " << def_centerYlimits.second << ")" << std::endl
<< "\t [--radius-thresh <radius-detection-threshold>] (default: " << (def_radiusThreshRatio < 0 ? "auto" : std::to_string(def_radiusThreshRatio)) << ")" << std::endl
<< "\t [--circle-perfectness <circle-perfectness-threshold>] (default: " << def_radiusThreshRatio << ")" << std::endl
<< "\t [--merging-thresh <center-distance-thresh> <radius-difference-thresh>] (default: centers distance threshold = " << def_centerDistanceThresh << ", radius difference threshold = " << def_radiusDifferenceThresh << ")" << std::endl
<< "\t [--display-edge-map]" << std::endl
<< "\t [--help, -h]" << std::endl
<< std::endl;
std::cout << "DESCRIPTION" << std::endl
<< "\t--input" << std::endl
<< "\t\tPermit to choose the type of input of the Hough Circle Algorithm" << std::endl
<< "\t\tDefault: " << def_input << std::endl
<< std::endl
#ifdef VISP_HAVE_NLOHMANN_JSON
<< "\t--config" << std::endl
<< "\t\tPermit to configure the Hough Circle Algorithm using a JSON file." << std::endl
<< "\t\tDefault: " << (def_jsonFilePath.empty() ? "unused" : def_jsonFilePath) << std::endl
<< std::endl
#endif
<< "\t--nb-circles" << std::endl
<< "\t\tPermit to choose the number of circles we want to detect in the image" << std::endl
<< "\t\tThe results will be the circles having the greatest number of votes." << std::endl
<< "\t\tDefault: " << def_nbCirclesToDetect << std::endl
<< std::endl
<< "\t--gaussian-kernel" << std::endl
<< "\t\tPermit to set the size of the Gaussian filter used to smooth the input image and compute its gradients." << std::endl
<< "\t\tMust be an odd value." << std::endl
<< "\t\tDefault: " << def_gaussianKernelSize << std::endl
<< std::endl
<< "\t--gaussian-sigma" << std::endl
<< "\t\tPermit to set the standard deviation of the Gaussian filter." << std::endl
<< "\t\tMust be a positive value." << std::endl
<< "\t\tDefault: " << def_gaussianSigma << std::endl
<< std::endl
<< "\t--canny-thresh" << std::endl
<< "\t\tPermit to set the lower and upper thresholds of the Canny edge detector." << std::endl
<< "\t\tIf a value is negative, it will be automatically computed." << std::endl
<< "\t\tDefault: " << def_upperCannyThresh << std::endl
<< std::endl
<< "\t--edge-filter" << std::endl
<< "\t\tPermit to set the number of iteration of 8-neighbor filter iterations of the result of the Canny edge detector." << std::endl
<< "\t\tIf negative, no filtering is performed." << std::endl
<< "\t\tDefault: " << def_nbEdgeFilteringIter << std::endl
<< std::endl
<< "\t--radius-limits" << std::endl
<< "\t\tPermit to set the minimum and maximum radii of the circles we are looking for." << std::endl
<< "\t\tDefault: min = " << def_minRadius << ", max = " << def_maxRadius << std::endl
<< std::endl
<< "\t--dilatation-repet" << std::endl
<< "\t\tPermit to set the number of iterations of the dilatation operation used to detect the maxima of the centers votes." << std::endl
<< "\t\tMinimum tolerated value is 1." << std::endl
<< "\t\tDefault: " << def_dilatationRepet << std::endl
<< std::endl
<< "\t--center-thresh" << std::endl
<< "\t\tPermit to set the minimum number of votes a point must reach to be considered as a center candidate." << std::endl
<< "\t\tIf the input is a real image, must be a positive value." << std::endl
<< "\t\tOtherwise, if the input is a synthetic image and the value is negative, a fine-tuned value will be used." << std::endl
<< "\t\tDefault: " << (def_centerThresh < 0 ? "auto" : std::to_string(def_centerThresh)) << std::endl
<< std::endl
<< "\t--center-xlim" << std::endl
<< "\t\tPermit to set the minimum and maximum horizontal position to be considered as a center candidate." << std::endl
<< "\t\tThe search area is limited to [-maxRadius; +image.width + maxRadius]." << std::endl
<< "\t\tDefault: " << def_centerXlimits.first << " , " << def_centerXlimits.second << std::endl
<< std::endl
<< "\t--center-ylim" << std::endl
<< "\t\tPermit to set the minimum and maximum vertical position to be considered as a center candidate." << std::endl
<< "\t\tThe search area is limited to [-maxRadius; +image.height + maxRadius]." << std::endl
<< "\t\tDefault: " << def_centerYlimits.first << " , " << def_centerYlimits.second << std::endl
<< std::endl
<< "\t--radius-thresh" << std::endl
<< "\t\tPermit to to set the minimum number of votes per radian a radius must reach to be considered as a circle candidate a given pair (center candidate, radius candidate)." << std::endl
<< "\t\tDefault: " << (def_radiusThreshRatio < 0 ? "auto" : std::to_string(def_radiusThreshRatio)) << std::endl
<< std::endl
<< "\t--circle-perfectness" << std::endl
<< "\t\tPermit to set the set the circle perfectness threshold." << std::endl
<< "\t\tThis parameter is used during the radius candidates computation." << std::endl
<< "\t\tThe scalar product radius RC_ij . gradient(Ep_j) >= m_circlePerfectness * || RC_ij || * || gradient(Ep_j) || to add a vote for the radius RC_ij." << std::endl
<< "\t\tDefault: " << def_circlePerfectness << std::endl
<< std::endl
<< "\t--merging-thresh" << std::endl
<< "\t\tPermit to set the thresholds used during the merging stage of the algorithm." << std::endl
<< "\t\tThe center distance threshold indicates the maximum distance the centers can be in order to be merged." << std::endl
<< "\t\tThe radius difference threshold indicates the maximum absolute difference between the two circle candidates in order to be merged." << std::endl
<< "\t\tTwo circle candidates must met these two conditions in order to be merged together." << std::endl
<< "\t\tDefault: centers distance threshold = " << def_centerDistanceThresh << ", radius difference threshold = " << def_radiusDifferenceThresh << std::endl
<< "\t--display-edge-map" << std::endl
<< "\t\tPermit to display the edge map used to detect the circles" << std::endl
<< "\t\tDefault: off" << std::endl
<< std::endl;
return EXIT_SUCCESS;
}
}
if (opt_centerThresh < 0 && opt_jsonFilePath.empty()) {
// The user asked to use the parameter value that has been fine-tuned
TypeInputImage inputType = typeInputImageFromString(opt_input);
switch (inputType) {
case TypeInputImage::FULL_DISKS:
#ifdef HAVE_OPENCV_IMGPROC
opt_centerThresh = 100.;
#else
opt_centerThresh = 75.;
#endif
break;
case TypeInputImage::HALF_DISKS:
#ifdef HAVE_OPENCV_IMGPROC
opt_centerThresh = 50.;
#else
opt_centerThresh = 25.;
#endif
break;
case TypeInputImage::QUARTER_DISKS:
#ifdef HAVE_OPENCV_IMGPROC
opt_centerThresh = 25.;
#else
opt_centerThresh = 15.;
#endif
break;
default:
throw(vpException(vpException::badValue, "Missing center threshold value to use with actual pictures as input. See the help for more information."));
}
}
if (opt_radiusThreshRatio < 0 && opt_jsonFilePath.empty()) {
// The user asked to use the parameter value that has been fine-tuned
TypeInputImage inputType = typeInputImageFromString(opt_input);
switch (inputType) {
case TypeInputImage::FULL_DISKS:
#ifdef HAVE_OPENCV_IMGPROC
opt_radiusThreshRatio = 5.;
#else
opt_radiusThreshRatio = 1.;
#endif
break;
case TypeInputImage::HALF_DISKS:
opt_radiusThreshRatio = 2.;
break;
case TypeInputImage::QUARTER_DISKS:
opt_radiusThreshRatio = 1.;
break;
default:
throw(vpException(vpException::badValue, "Missing radius threshold value to use with actual pictures as input. See the help for more information."));
}
}
//! [Algo params]
vpCircleHoughTransform::vpCircleHoughTransformParameters
algoParams(opt_gaussianKernelSize
, opt_gaussianSigma
, opt_sobelKernelSize
, opt_lowerCannyThresh
, opt_upperCannyThresh
, opt_nbEdgeFilteringIter
, opt_centerXlimits
, opt_centerYlimits
, opt_minRadius
, opt_maxRadius
, opt_dilatationRepet
, opt_centerThresh
, opt_radiusThreshRatio
, opt_circlePerfectness
, opt_centerDistanceThresh
, opt_radiusDifferenceThresh
);
//! [Algo params]
//! [Algo init]
vpCircleHoughTransform detector;
if (opt_jsonFilePath.empty()) {
std::cout << "Initializing detector from the program arguments [...]" << std::endl;
detector.init(algoParams);
}
else {
#ifdef VISP_HAVE_NLOHMANN_JSON
std::cout << "Initializing detector from JSON file \"" << opt_jsonFilePath << "\", some of the program arguments will be ignored [...]" << std::endl;
detector.initFromJSON(opt_jsonFilePath);
#else
throw(vpException(vpException::functionNotImplementedError, "You must install nlohmann JSON library to use this feature, see https://visp-doc.inria.fr/doxygen/visp-daily/supported-third-parties.html#soft_tool_json for more information."));
#endif
}
//! [Algo init]
std::cout << detector;
vpImage<unsigned char> I_src;
TypeInputImage inputType = typeInputImageFromString(opt_input);
if (inputType == USER_IMG) {
//! [Manage video]
if (opt_input.find("%") != std::string::npos) {
// The user wants to read a sequence of images from different files
bool hasToContinue = true;
vpVideoReader g;
g.setFileName(opt_input);
g.open(I_src);
while (!g.end() && hasToContinue) {
g.acquire(I_src);
hasToContinue = test_detection(I_src, detector, opt_nbCirclesToDetect, false, opt_displayCanny);
vpTime::wait(40);
}
}
//! [Manage video]
else {
//! [Manage single image]
// Check if opt_input exists
if (!vpIoTools::checkFilename(opt_input)) {
throw(vpException(vpException::ioError, "Input file \"" + opt_input + "\" does not exist !"));
}
// Read the image and perform detection on it
vpImageIo::read(I_src, opt_input);
test_detection(I_src, detector, opt_nbCirclesToDetect, true, opt_displayCanny);
//! [Manage single image]
}
}
else {
//! [Manage synthetic image]
I_src = generateImage(inputType);
test_detection(I_src, detector, opt_nbCirclesToDetect, true, opt_displayCanny);
//! [Manage synthetic image]
}
return EXIT_SUCCESS;
}
#else
int main()
{
std::cout << "This tutorial needs to be build at least with cxx 11 standard!" << std::endl;
return EXIT_SUCCESS;
}
#endif
|