1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
//! \example tutorial-megapose-live-single-object-tracking.cpp
#include <iostream>
#include <visp3/core/vpConfig.h>
#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_17) && defined(VISP_HAVE_NLOHMANN_JSON) && defined(VISP_HAVE_OPENCV) && defined(HAVE_OPENCV_VIDEOIO) && defined(HAVE_OPENCV_DNN) && \
(defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI) || defined(HAVE_OPENCV_HIGHGUI))
#include <optional>
#include <visp3/core/vpIoTools.h>
#include <visp3/detection/vpDetectorDNNOpenCV.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/dnn_tracker/vpMegaPose.h>
#include <visp3/dnn_tracker/vpMegaPoseTracker.h>
#include <visp3/io/vpJsonArgumentParser.h>
#include <nlohmann/json.hpp>
#include <opencv2/videoio.hpp>
using json = nlohmann::json; //! json namespace shortcut
/*
* Interpolate two vpColors. Linear interpolation between each components (R, G, B)
*
* low starting color
* high ending color
* f interpolation factor, between 0 and 1
* Returns the interpolated color
*/
vpColor interpolate(const vpColor &low, const vpColor &high, const float f)
{
const float r = ((float)high.R - (float)low.R) * f;
const float g = ((float)high.G - (float)low.G) * f;
const float b = ((float)high.B - (float)low.B) * f;
return vpColor((unsigned char)r, (unsigned char)g, (unsigned char)b);
}
/*
* Display the Megapose confidence score as a rectangle in the image.
* This rectangle becomes green when Megapose is "confident" about its prediction
* The confidence score measures whether Megapose can, from its pose estimation, recover the true pose in future pose refinement iterations
*
* \param[in] I : The image in which to display the confidence.
* \param[in] score : The confidence score of Megapose, between 0 and 1.
*/
void displayScore(const vpImage<vpRGBa> &I, float score)
{
const unsigned top = static_cast<unsigned>(I.getHeight() * 0.85f);
const unsigned height = static_cast<unsigned>(I.getHeight() * 0.1f);
const unsigned left = static_cast<unsigned>(I.getWidth() * 0.05f);
const unsigned width = static_cast<unsigned>(I.getWidth() * 0.5f);
vpRect full(left, top, width, height);
vpRect scoreRect(left, top, width * score, height);
const vpColor low = vpColor::red;
const vpColor high = vpColor::green;
const vpColor c = interpolate(low, high, score);
vpDisplay::displayRectangle(I, full, c, false, 5);
vpDisplay::displayRectangle(I, scoreRect, c, true, 1);
}
/*
* Add the Megapose rendering on top of the actual image I.
* Require I and overlay to be of the same size.
* Note that a fully black object will not render
*/
void overlayRender(vpImage<vpRGBa> &I, const vpImage<vpRGBa> &overlay)
{
const vpRGBa black = vpRGBa(0, 0, 0);
for (unsigned int i = 0; i < I.getHeight(); ++i) {
for (unsigned int j = 0; j < I.getWidth(); ++j) {
if (overlay[i][j] != black) {
I[i][j] = overlay[i][j];
}
}
}
}
//! [Detect]
/*
* Run the detection network on an image in order to find a specific object.
* The best matching detection is returned:
* - If a previous Megapose estimation is available, find the closest match in the image (Euclidean distance between centers)
* - Otherwise, take the detection with highest confidence
* If no detection corresponding to detectionLabel is found, then std::nullopt is returned
*/
std::optional<vpRect> detectObjectForInitMegaposeDnn(vpDetectorDNNOpenCV &detector, const cv::Mat &I,
const std::string &detectionLabel,
std::optional<vpMegaPoseEstimate> previousEstimate)
{
std::vector<vpDetectorDNNOpenCV::DetectedFeatures2D> detections_vec;
detector.detect(I, detections_vec);
std::vector<vpDetectorDNNOpenCV::DetectedFeatures2D> matchingDetections;
for (const auto &detection : detections_vec) {
std::optional<std::string> classnameOpt = detection.getClassName();
if (classnameOpt) {
if (*classnameOpt == detectionLabel) {
matchingDetections.push_back(detection);
}
}
}
if (matchingDetections.size() == 0) {
return std::nullopt;
}
else if (matchingDetections.size() == 1) {
return matchingDetections[0].getBoundingBox();
}
else {
// Get detection that is closest to previous object bounding box estimated by Megapose
if (previousEstimate) {
vpRect best;
double bestDist = 10000.f;
const vpImagePoint previousCenter = (*previousEstimate).boundingBox.getCenter();
for (const auto &detection : matchingDetections) {
const vpRect detectionBB = detection.getBoundingBox();
const vpImagePoint center = detectionBB.getCenter();
const double matchDist = vpImagePoint::distance(center, previousCenter);
if (matchDist < bestDist) {
bestDist = matchDist;
best = detectionBB;
}
}
return best;
}
else { // Get detection with highest confidence
vpRect best;
double highestConf = 0.0;
for (const auto &detection : matchingDetections) {
const double conf = detection.getConfidenceScore();
if (conf > highestConf) {
highestConf = conf;
best = detection.getBoundingBox();
}
}
return best;
}
}
return std::nullopt;
}
/*
* Ask user to provide the detection themselves. They must click to start labelling, then click on the top left and bottom right corner to create the detection.
*/
std::optional<vpRect> detectObjectForInitMegaposeClick(const vpImage<vpRGBa> &I)
{
const bool startLabelling = vpDisplay::getClick(I, false);
const vpImagePoint textPosition(10.0, 20.0);
if (startLabelling) {
vpImagePoint topLeft, bottomRight;
vpDisplay::displayText(I, textPosition, "Click the upper left corner of the bounding box", vpColor::red);
vpDisplay::flush(I);
vpDisplay::getClick(I, topLeft, true);
vpDisplay::display(I);
vpDisplay::displayCross(I, topLeft, 5, vpColor::red, 2);
vpDisplay::displayText(I, textPosition, "Click the bottom right corner of the bounding box", vpColor::red);
vpDisplay::flush(I);
vpDisplay::getClick(I, bottomRight, true);
vpRect bb(topLeft, bottomRight);
return bb;
}
else {
vpDisplay::display(I);
vpDisplay::displayText(I, textPosition, "Click when the object is visible and static to start reinitializing megapose.", vpColor::red);
vpDisplay::flush(I);
return std::nullopt;
}
}
//! [Detect]
enum DetectionMethod
{
UNKNOWN,
CLICK,
DNN
};
NLOHMANN_JSON_SERIALIZE_ENUM(DetectionMethod, {
{UNKNOWN, nullptr}, // Default value if the json string is not in "current", "desired" or "mean"
{CLICK, "click"},
{DNN, "dnn"} }
);
int main(int argc, const char *argv [])
{
unsigned width = 640, height = 480;
vpCameraParameters cam;
std::string videoDevice = "0";
std::string megaposeAddress = "127.0.0.1";
unsigned megaposePort = 5555;
int refinerIterations = 1, coarseNumSamples = 576;
double reinitThreshold = 0.2;
DetectionMethod detectionMethod = DetectionMethod::UNKNOWN;
std::string detectorModelPath = "path/to/model.onnx", detectorConfig = "none";
std::string detectorFramework = "onnx", detectorTypeString = "yolov7";
std::string objectName = "cube";
std::vector<std::string> labels = { "cube" };
float detectorMeanR = 0.f, detectorMeanG = 0.f, detectorMeanB = 0.f;
float detectorConfidenceThreshold = 0.65f, detectorNmsThreshold = 0.5f, detectorFilterThreshold = -0.25f;
float detectorScaleFactor = 0.0039f;
bool detectorSwapRB = false;
//! [Arguments]
vpJsonArgumentParser parser("Single object tracking with Megapose", "--config", "/");
parser.addArgument("width", width, true, "The image width")
.addArgument("height", height, true, "The image height")
.addArgument("camera", cam, true, "The camera intrinsic parameters. Should correspond to a perspective projection model without distortion.")
.addArgument("video-device", videoDevice, true, "Video device")
.addArgument("object", objectName, true, "Name of the object to track with megapose.")
.addArgument("detectionMethod", detectionMethod, true, "How to perform detection of the object to get the bounding box:"
" \"click\" for user labelling, \"dnn\" for dnn detection.")
.addArgument("reinitThreshold", reinitThreshold, false, "If the Megapose score falls below this threshold, then a reinitialization is be required."
" Should be between 0 and 1")
.addArgument("megapose/address", megaposeAddress, true, "IP address of the Megapose server.")
.addArgument("megapose/port", megaposePort, true, "Port on which the Megapose server listens for connections.")
.addArgument("megapose/refinerIterations", refinerIterations, false, "Number of Megapose refiner model iterations."
"A higher count may lead to better accuracy, at the cost of more processing time")
.addArgument("megapose/initialisationNumSamples", coarseNumSamples, false, "Number of Megapose renderings used for the initial pose estimation.")
.addArgument("detector/model-path", detectorModelPath, true, "Path to the model")
.addArgument("detector/config", detectorConfig, true, "Path to the model configuration. Set to none if config is not required.")
.addArgument("detector/framework", detectorFramework, true, "Detector framework")
.addArgument("detector/type", detectorTypeString, true, "Detector type")
.addArgument("detector/labels", labels, true, "Detection class labels")
.addArgument("detector/mean/red", detectorMeanR, false, "Detector mean red component. Used to normalize image")
.addArgument("detector/mean/green", detectorMeanG, false, "Detector mean green component. Used to normalize image")
.addArgument("detector/mean/blue", detectorMeanB, false, "Detector mean red component. Used to normalize image")
.addArgument("detector/confidenceThreshold", detectorConfidenceThreshold, false, "Detector confidence threshold. "
"When a detection with a confidence below this threshold, it is ignored")
.addArgument("detector/nmsThreshold", detectorNmsThreshold, false, "Detector non maximal suppression threshold.")
.addArgument("detector/filterThreshold", detectorFilterThreshold, false)
.addArgument("detector/scaleFactor", detectorScaleFactor, false, "Pixel intensity rescaling factor. If set to 1/255, then pixel values are between 0 and 1.")
.addArgument("detector/swapRedAndBlue", detectorSwapRB, false, "Whether to swap red and blue channels before feeding the image to the detector.");
parser.parse(argc, argv);
//! [Arguments]
if (cam.get_projModel() != vpCameraParameters::perspectiveProjWithoutDistortion) {
throw vpException(vpException::badValue, "The camera projection model should be without distortion, as other models are ignored by Megapose");
}
if (detectionMethod == DetectionMethod::UNKNOWN) {
throw vpException(vpException::badValue, "The specified detection method is incorrect: it should be either \"click\" or \"dnn\"");
}
cv::VideoCapture capture;
bool isLiveCapture;
bool hasCaptureOpeningSucceeded;
double videoFrametime = 0; // Only for prerecorded videos
if (vpMath::isNumber(videoDevice)) {
hasCaptureOpeningSucceeded = capture.open(std::atoi(videoDevice.c_str()));
isLiveCapture = true;
}
else {
hasCaptureOpeningSucceeded = capture.open(videoDevice);
isLiveCapture = false;
double fps = capture.get(cv::CAP_PROP_FPS);
videoFrametime = (1.0 / fps) * 1000.0;
}
if (!hasCaptureOpeningSucceeded) {
std::cout << "Capture from camera: " << videoDevice << " didn't work" << std::endl;
return EXIT_FAILURE;
}
vpImage<vpRGBa> I;
#if defined(VISP_HAVE_X11)
vpDisplayX d;
#elif defined(VISP_HAVE_GDI)
vpDisplayGDI d;
#elif defined(HAVE_OPENCV_HIGHGUI)
vpDisplayOpenCV d;
#endif
//d.setDownScalingFactor(vpDisplay::SCALE_AUTO);
#if (VISP_HAVE_OPENCV_VERSION >= 0x030403) && defined(HAVE_OPENCV_DNN) && (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_17)
vpDetectorDNNOpenCV::DNNResultsParsingType detectorType =
vpDetectorDNNOpenCV::dnnResultsParsingTypeFromString(detectorTypeString);
vpDetectorDNNOpenCV::NetConfig netConfig(detectorConfidenceThreshold, detectorNmsThreshold, labels,
cv::Size(width, height), detectorFilterThreshold);
vpDetectorDNNOpenCV dnn(netConfig, detectorType);
if (detectionMethod == DetectionMethod::DNN) {
dnn.readNet(detectorModelPath, detectorConfig, detectorFramework);
dnn.setMean(detectorMeanR, detectorMeanG, detectorMeanB);
dnn.setScaleFactor(detectorScaleFactor);
dnn.setSwapRB(detectorSwapRB);
}
#endif
//! [Instantiate megapose]
std::shared_ptr<vpMegaPose> megapose;
try {
megapose = std::make_shared<vpMegaPose>(megaposeAddress, megaposePort, cam, height, width);
}
catch (...) {
throw vpException(vpException::ioError, "Could not connect to Megapose server at " + megaposeAddress + " on port " + std::to_string(megaposePort));
}
vpMegaPoseTracker megaposeTracker(megapose, objectName, refinerIterations);
megapose->setCoarseNumSamples(coarseNumSamples);
const std::vector<std::string> allObjects = megapose->getObjectNames();
if (std::find(allObjects.begin(), allObjects.end(), objectName) == allObjects.end()) {
throw vpException(vpException::badValue, "Object " + objectName + " is not known by the Megapose server!");
}
std::future<vpMegaPoseEstimate> trackerFuture;
//! [Instantiate megapose]
cv::Mat frame;
vpMegaPoseEstimate megaposeEstimate; // last Megapose estimation
vpRect lastDetection; // Last detection (initialization)
bool callMegapose = true; // Whether we should call Megapose this iteration
bool initialized = false; // Whether tracking should be initialized or reinitialized
bool tracking = false;
bool overlayModel = true;
vpImage<vpRGBa> overlayImage(height, width);
std::string overlayMode = "full";
std::vector<double> megaposeTimes;
std::vector<double> frameTimes;
double megaposeStartTime = 0.0;
//! [Acquisition]
while (true) {
const double frameStart = vpTime::measureTimeMs();
capture >> frame;
if (frame.empty())
break;
if (I.getSize() == 0) {
vpImageConvert::convert(frame, I);
d.init(I);
vpDisplay::setTitle(I, "Megapose object pose estimation");
}
else {
vpImageConvert::convert(frame, I);
}
vpDisplay::display(I);
//! [Acquisition]
// Check whether Megapose is still running
//! [Check megapose]
if (!callMegapose && trackerFuture.wait_for(std::chrono::milliseconds(0)) == std::future_status::ready) {
megaposeEstimate = trackerFuture.get();
if (tracking) {
megaposeTimes.push_back(vpTime::measureTimeMs() - megaposeStartTime);
}
callMegapose = true;
tracking = true;
if (overlayModel) {
overlayImage = megapose->viewObjects({ objectName }, { megaposeEstimate.cTo }, overlayMode);
}
if (megaposeEstimate.score < reinitThreshold) { // If confidence is low, require a reinitialisation with 2D detection
initialized = false;
}
}
//! [Check megapose]
//! [Call MegaPose]
if (callMegapose) {
if (!initialized) {
tracking = false;
std::optional<vpRect> detection = std::nullopt;
#if (VISP_HAVE_OPENCV_VERSION >= 0x030403) && defined(HAVE_OPENCV_DNN) && (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_17)
if (detectionMethod == DetectionMethod::DNN) {
detection = detectObjectForInitMegaposeDnn(
dnn, frame, objectName, initialized ? std::optional(megaposeEstimate) : std::nullopt);
}
#endif
if (detectionMethod == DetectionMethod::CLICK) {
detection = detectObjectForInitMegaposeClick(I);
}
if (detection) {
initialized = true;
lastDetection = *detection;
trackerFuture = megaposeTracker.init(I, lastDetection);
callMegapose = false;
}
}
else {
trackerFuture = megaposeTracker.track(I);
callMegapose = false;
megaposeStartTime = vpTime::measureTimeMs();
}
}
//! [Call MegaPose]
//! [Display]
std::string keyboardEvent;
const bool keyPressed = vpDisplay::getKeyboardEvent(I, keyboardEvent, false);
if (keyPressed) {
if (keyboardEvent == "t") {
overlayModel = !overlayModel;
}
else if (keyboardEvent == "w") {
overlayMode = overlayMode == "full" ? "wireframe" : "full";
}
}
if (tracking) {
if (overlayModel) {
overlayRender(I, overlayImage);
vpDisplay::display(I);
}
vpDisplay::displayText(I, 20, 20, "Right click to quit", vpColor::red);
vpDisplay::displayText(I, 30, 20, "Press T: Toggle overlay", vpColor::red);
vpDisplay::displayText(I, 40, 20, "Press W: Toggle wireframe", vpColor::red);
vpDisplay::displayFrame(I, megaposeEstimate.cTo, cam, 0.05, vpColor::none, 3);
//vpDisplay::displayRectangle(I, lastDetection, vpColor::red);
displayScore(I, megaposeEstimate.score);
}
//! [Display]
vpDisplay::flush(I);
vpMouseButton::vpMouseButtonType button;
if (vpDisplay::getClick(I, button, false)) {
if (button == vpMouseButton::button3) {
break; // Right click to stop
}
}
const double frameEnd = vpTime::measureTimeMs();
if (!isLiveCapture) {
vpTime::wait(std::max(0.0, videoFrametime - (frameEnd - frameStart)));
}
frameTimes.push_back(vpTime::measureTimeMs() - frameStart);
}
std::cout << "Average frame time: " << vpMath::getMean(frameTimes) << std::endl;
std::cout << "Average time between Megapose calls: " << vpMath::getMean(megaposeTimes) << std::endl;
}
#else
int main()
{
std::cout << "Compile ViSP with the DNN tracker module, the JSON 3rd party library and the OpenCV detection module" << std::endl;
return EXIT_SUCCESS;
}
#endif
|