File: tutorial-ibvs-4pts-image-tracking.cpp

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (183 lines) | stat: -rw-r--r-- 5,335 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*! \example tutorial-ibvs-4pts-image-tracking.cpp */
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/robot/vpImageSimulator.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>

void display_trajectory(const vpImage<unsigned char> &I, const std::vector<vpDot2> &dot);

/*!
  Given an image of a target, this class provided virtual
  framegrabbing capabilities in order to retrieve an image of a
  virtual camera depending on its 3D position.
*/
class vpVirtualGrabber
{
public:
  /*!
    Initialize the grabber with a target.
    \param filename : File name corresponding to an image of a target.
    \param cam : Intrinsic camera parameters.
    */
  vpVirtualGrabber(const std::string &filename, const vpCameraParameters &cam) : sim_(), target_(), cam_()
  {
    // The target is a square 20cm by 2cm square
    // Initialise the 3D coordinates of the target corners
    for (int i = 0; i < 4; i++)
      X_[i].resize(3);
    // Top left      Top right        Bottom right    Bottom left
    X_[0][0] = -0.1;
    X_[1][0] = 0.1;
    X_[2][0] = 0.1;
    X_[3][0] = -0.1;
    X_[0][1] = -0.1;
    X_[1][1] = -0.1;
    X_[2][1] = 0.1;
    X_[3][1] = 0.1;
    X_[0][2] = 0;
    X_[1][2] = 0;
    X_[2][2] = 0;
    X_[3][2] = 0;

    vpImageIo::read(target_, filename);

    // Initialize the image simulator
    cam_ = cam;
    sim_.setInterpolationType(vpImageSimulator::BILINEAR_INTERPOLATION);
    sim_.init(target_, X_);
  }

  /*!

    Compute the image of the virtual camera from its position with
    respect to the object.

    \param I : Image provided by the virtual camera.
    \param cMo : Pose of the camera with respect to the object frame.
  */
  void acquire(vpImage<unsigned char> &I, const vpHomogeneousMatrix &cMo)
  {
    sim_.setCleanPreviousImage(true);
    sim_.setCameraPosition(cMo);
    sim_.getImage(I, cam_);
  }

private:
  vpColVector X_[4]; // 3D coordinates of the target corners
  vpImageSimulator sim_;
  vpImage<unsigned char> target_; // image of the target
  vpCameraParameters cam_;
};

void display_trajectory(const vpImage<unsigned char> &I, const std::vector<vpDot2> &dot)
{
  static std::vector<vpImagePoint> traj[4];
  for (unsigned int i = 0; i < 4; i++) {
    traj[i].push_back(dot[i].getCog());
  }
  for (unsigned int i = 0; i < 4; i++) {
    for (unsigned int j = 1; j < traj[i].size(); j++) {
      vpDisplay::displayLine(I, traj[i][j - 1], traj[i][j], vpColor::green);
    }
  }
}

int main()
{
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV)
  try {
    vpHomogeneousMatrix cdMo(0, 0, 0.75, 0, 0, 0);
    vpHomogeneousMatrix cMo(0.15, -0.1, 1., vpMath::rad(10), vpMath::rad(-10), vpMath::rad(50));

    vpImage<unsigned char> I(480, 640, 255);
    vpCameraParameters cam(840, 840, I.getWidth() / 2, I.getHeight() / 2);

    std::vector<vpPoint> point;
    point.push_back(vpPoint(-0.1, -0.1, 0));
    point.push_back(vpPoint(0.1, -0.1, 0));
    point.push_back(vpPoint(0.1, 0.1, 0));
    point.push_back(vpPoint(-0.1, 0.1, 0));

    vpServo task;
    task.setServo(vpServo::EYEINHAND_CAMERA);
    task.setInteractionMatrixType(vpServo::CURRENT);
    task.setLambda(0.5);

    vpVirtualGrabber g("./target_square.pgm", cam);
    g.acquire(I, cMo);

#if defined(VISP_HAVE_X11)
    vpDisplayX d(I, 0, 0, "Current camera view");
#elif defined(VISP_HAVE_GDI)
    vpDisplayGDI d(I, 0, 0, "Current camera view");
#elif defined(HAVE_OPENCV_HIGHGUI)
    vpDisplayOpenCV d(I, 0, 0, "Current camera view");
#else
    std::cout << "No image viewer is available..." << std::endl;
#endif

    vpDisplay::display(I);
    vpDisplay::displayText(I, 10, 10, "Click in the 4 dots to initialise the tracking and start the servo",
                           vpColor::red);
    vpDisplay::flush(I);

    vpFeaturePoint p[4], pd[4];
    std::vector<vpDot2> dot(4);

    for (unsigned int i = 0; i < 4; i++) {
      point[i].track(cdMo);
      vpFeatureBuilder::create(pd[i], point[i]);

      dot[i].setGraphics(true);
      dot[i].initTracking(I);
      vpDisplay::flush(I);
      vpFeatureBuilder::create(p[i], cam, dot[i].getCog());

      task.addFeature(p[i], pd[i]);
    }

    vpHomogeneousMatrix wMc, wMo;
    vpSimulatorCamera robot;
    robot.setSamplingTime(0.040);
    robot.getPosition(wMc);
    wMo = wMc * cMo;

    for (;;) {
      robot.getPosition(wMc);
      cMo = wMc.inverse() * wMo;

      g.acquire(I, cMo);

      vpDisplay::display(I);

      for (unsigned int i = 0; i < 4; i++) {
        dot[i].track(I);
        vpFeatureBuilder::create(p[i], cam, dot[i].getCog());

        vpColVector cP;
        point[i].changeFrame(cMo, cP);
        p[i].set_Z(cP[2]);
      }

      vpColVector v = task.computeControlLaw();

      display_trajectory(I, dot);
      vpServoDisplay::display(task, cam, I, vpColor::green, vpColor::red);
      robot.setVelocity(vpRobot::CAMERA_FRAME, v);

      vpDisplay::flush(I);
      if (vpDisplay::getClick(I, false))
        break;

      vpTime::wait(robot.getSamplingTime() * 1000);
    }
  } catch (const vpException &e) {
    std::cout << "Catch an exception: " << e << std::endl;
  }
#endif
}