1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
|
/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2025 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Demonstration of the wireframe simulator with a simple visual servoing
*/
/*!
\example servoSimuSphere.cpp
Demonstration of the wireframe simulator with a simple visual servoing.
*/
#include <cmath> // std::fabs
#include <limits> // numeric_limits
#include <stdlib.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpSphere.h>
#include <visp3/core/vpTime.h>
#include <visp3/core/vpVelocityTwistMatrix.h>
#include <visp3/gui/vpDisplayFactory.h>
#include <visp3/gui/vpPlot.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/robot/vpWireFrameSimulator.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpGenericFeature.h>
#include <visp3/vs/vpServo.h>
#define GETOPTARGS "dhp"
#if defined(VISP_HAVE_DISPLAY) && (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
#if defined(ENABLE_VISP_NAMESPACE)
using namespace VISP_NAMESPACE_NAME;
#endif
/*!
Print the program options.
\param name : Program name.
\param badparam : Bad parameter name.
*/
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Demonstration of the wireframe simulator with a simple visual servoing.\n\
\n\
The visual servoing consists in bringing the camera at a desired position from the object.\n\
\n\
The visual features used to compute the pose of the camera and thus the control law are special moments computed with the sphere's parameters.\n\
\n\
SYNOPSIS\n\
%s [-d] [-p] [-h]\n",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-d \n\
Turn off the display.\n\
\n\
-p \n\
Turn off the plotter.\n\
\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
/*!
Set the program options.
\param argc : Command line number of parameters.
\param argv : Array of command line parameters.
\param display : Display activation.
\param plot : Plotter activation.
\return false if the program has to be stopped, true otherwise.
*/
bool getOptions(int argc, const char **argv, bool &display, bool &plot)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'd':
display = false;
break;
case 'p':
plot = false;
break;
case 'h':
usage(argv[0], nullptr);
return false;
default:
usage(argv[0], optarg_);
return false;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], nullptr);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
/*
Computes the virtual visual features corresponding to the sphere and stores
it in the generic feature.
The visual feature vector is computed thanks to the following formula : s =
{sx, sy, sz} sx = gx*h2/(sqrt(h2+1) sx = gy*h2/(sqrt(h2+1) sz = sqrt(h2+1)
with gx and gy the center of gravity of the ellipse,
with h2 = (gx²+gy²)/(4*n20*gy²+4*n02*gx²-8n11gxgy)
with n20,n02,n11 the second order centered moments of the sphere normalized by its area
(i.e., such that \f$n_{ij} = \mu_{ij}/a\f$ where \f$\mu_{ij}\f$ are the centered moments and a the area)
*/
void computeVisualFeatures(const vpSphere &sphere, vpGenericFeature &s)
{
double gx = sphere.get_x();
double gy = sphere.get_y();
double n02 = sphere.get_n02();
double n20 = sphere.get_n20();
double n11 = sphere.get_n11();
double h2;
// if (gx != 0 || gy != 0)
if (std::fabs(gx) > std::numeric_limits<double>::epsilon() || std::fabs(gy) > std::numeric_limits<double>::epsilon())
h2 = (vpMath::sqr(gx) + vpMath::sqr(gy)) /
(4 * n20 * vpMath::sqr(gy) + 4 * n02 * vpMath::sqr(gx) - 8 * n11 * gx * gy);
else
h2 = 1 / (4 * n20);
double sx = gx * h2 / (sqrt(h2 + 1));
double sy = gy * h2 / (sqrt(h2 + 1));
double sz = sqrt(h2 + 1); //(h2-(vpMath::sqr(sx)+vpMath::sqr(sy)-1))/(2*sqrt(h2));
s.set_s(sx, sy, sz);
}
/*
Computes the interaction matrix such as L = [-1/R*I3 [s]x]
with R the radius of the sphere
with I3 the 3x3 identity matrix
with [s]x the skew matrix related to s
*/
void computeInteractionMatrix(const vpGenericFeature &s, const vpSphere &sphere, vpMatrix &L)
{
L = 0;
L[0][0] = -1 / sphere.getR();
L[1][1] = -1 / sphere.getR();
L[2][2] = -1 / sphere.getR();
double s0, s1, s2;
s.get_s(s0, s1, s2);
vpTranslationVector c(s0, s1, s2);
vpMatrix sk;
sk = c.skew();
for (unsigned int i = 0; i < 3; i++)
for (unsigned int j = 0; j < 3; j++)
L[i][j + 3] = sk[i][j];
}
int main(int argc, const char **argv)
{
const unsigned int NB_DISPLAYS = 3;
#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
std::shared_ptr<vpDisplay> display[NB_DISPLAYS];
for (unsigned int i = 0; i < NB_DISPLAYS; ++i) {
display[i] = vpDisplayFactory::createDisplay();
}
#else
vpDisplay *display[NB_DISPLAYS];
for (unsigned int i = 0; i < NB_DISPLAYS; ++i) {
display[i] = vpDisplayFactory::allocateDisplay();
}
#endif
unsigned int exit_status = EXIT_SUCCESS;
try {
bool opt_display = true;
bool opt_plot = true;
// Read the command line options
if (getOptions(argc, argv, opt_display, opt_plot) == false) {
return EXIT_FAILURE;
}
vpImage<vpRGBa> Iint(480, 640, vpRGBa(255));
vpImage<vpRGBa> Iext1(480, 640, vpRGBa(255));
vpImage<vpRGBa> Iext2(480, 640, vpRGBa(255));
if (opt_display) {
// Display size is automatically defined by the image (I) size
display[0]->init(Iint, 100, 100, "The internal view");
display[1]->init(Iext1, 100, 100, "The first external view");
display[2]->init(Iext2, 100, 100, "The second external view");
vpDisplay::setWindowPosition(Iint, 0, 0);
vpDisplay::setWindowPosition(Iext1, 750, 0);
vpDisplay::setWindowPosition(Iext2, 0, 550);
vpDisplay::display(Iint);
vpDisplay::flush(Iint);
vpDisplay::display(Iext1);
vpDisplay::flush(Iext1);
vpDisplay::display(Iext2);
vpDisplay::flush(Iext2);
}
vpPlot *plotter = nullptr;
vpServo task;
vpSimulatorCamera robot;
float sampling_time = 0.020f; // Sampling period in second
robot.setSamplingTime(sampling_time);
// Since the task gain lambda is very high, we need to increase default
// max velocities
robot.setMaxTranslationVelocity(10);
robot.setMaxRotationVelocity(vpMath::rad(180));
// Set initial position of the object in the camera frame
vpHomogeneousMatrix cMo(0, 0.1, 2.0, vpMath::rad(35), vpMath::rad(25), 0);
// Set desired position of the object in the camera frame
vpHomogeneousMatrix cdMo(0.0, 0.0, 0.8, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
// Set initial position of the object in the world frame
vpHomogeneousMatrix wMo(0.0, 0.0, 0, 0, 0, 0);
// Position of the camera in the world frame
vpHomogeneousMatrix wMc;
wMc = wMo * cMo.inverse();
robot.setPosition(wMc);
// The sphere
vpSphere sphere(0, 0, 0, 0.15);
// Projection of the sphere
sphere.track(cMo);
// Set the current visual feature
vpGenericFeature s(3);
computeVisualFeatures(sphere, s);
// Projection of the points
sphere.track(cdMo);
vpGenericFeature sd(3);
computeVisualFeatures(sphere, sd);
vpMatrix L(3, 6);
computeInteractionMatrix(sd, sphere, L);
sd.setInteractionMatrix(L);
task.setServo(vpServo::EYEINHAND_L_cVe_eJe);
task.setInteractionMatrixType(vpServo::DESIRED);
vpHomogeneousMatrix cMe;
vpVelocityTwistMatrix cVe(cMe);
task.set_cVe(cVe);
vpMatrix eJe;
robot.get_eJe(eJe);
task.set_eJe(eJe);
task.addFeature(s, sd);
task.setLambda(7);
if (opt_plot) {
plotter = new vpPlot(2, 480, 640, 750, 550, "Real time curves plotter");
plotter->setTitle(0, "Visual features error");
plotter->setTitle(1, "Camera velocities");
plotter->initGraph(0, task.getDimension());
plotter->initGraph(1, 6);
plotter->setLegend(0, 0, "error_feat_sx");
plotter->setLegend(0, 1, "error_feat_sy");
plotter->setLegend(0, 2, "error_feat_sz");
plotter->setLegend(1, 0, "vc_x");
plotter->setLegend(1, 1, "vc_y");
plotter->setLegend(1, 2, "vc_z");
plotter->setLegend(1, 3, "wc_x");
plotter->setLegend(1, 4, "wc_y");
plotter->setLegend(1, 5, "wc_z");
}
vpWireFrameSimulator sim;
// Set the scene
sim.initScene(vpWireFrameSimulator::SPHERE, vpWireFrameSimulator::D_STANDARD);
// Initialize simulator frames
sim.set_fMo(wMo); // Position of the object in the world reference frame
sim.setCameraPositionRelObj(cMo); // Initial position of the object in the camera frame
sim.setDesiredCameraPosition(cdMo); // Desired position of the object in the camera frame
// Set the External camera position
vpHomogeneousMatrix camMf(0.0, 0, 3.5, vpMath::rad(0), vpMath::rad(30), 0);
sim.setExternalCameraPosition(camMf);
// Computes the position of a camera which is fixed in the object frame
vpHomogeneousMatrix camoMf(0, 0.0, 2.5, 0, vpMath::rad(140), 0);
camoMf = camoMf * (sim.get_fMo().inverse());
// Set the parameters of the cameras (internal and external)
vpCameraParameters camera(1000, 1000, 320, 240);
sim.setInternalCameraParameters(camera);
sim.setExternalCameraParameters(camera);
int max_iter = 10;
if (opt_display) {
max_iter = 1000;
// Get the internal and external views
sim.getInternalImage(Iint);
sim.getExternalImage(Iext1);
sim.getExternalImage(Iext2, camoMf);
// Display the object frame (current and desired position)
vpDisplay::displayFrame(Iint, cMo, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iint, cdMo, camera, 0.2, vpColor::none);
// Display the object frame the world reference frame and the camera
// frame
vpDisplay::displayFrame(Iext1, camMf * sim.get_fMo() * cMo.inverse(), camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iext1, camMf * sim.get_fMo(), camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iext1, camMf, camera, 0.2, vpColor::none);
// Display the world reference frame and the object frame
vpDisplay::displayFrame(Iext2, camoMf, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iext2, camoMf * sim.get_fMo(), camera, 0.05, vpColor::none);
vpDisplay::displayText(Iint, 20, 20, "Click to start visual servo", vpColor::red);
vpDisplay::flush(Iint);
vpDisplay::flush(Iext1);
vpDisplay::flush(Iext2);
std::cout << "Click on a display" << std::endl;
while (!vpDisplay::getClick(Iint, false) && !vpDisplay::getClick(Iext1, false) &&
!vpDisplay::getClick(Iext2, false)) {
}
}
// Print the task
task.print();
int iter = 0;
bool stop = false;
vpColVector v;
double t_prev, t = vpTime::measureTimeMs();
while (iter++ < max_iter && !stop) {
t_prev = t;
t = vpTime::measureTimeMs();
if (opt_display) {
vpDisplay::display(Iint);
vpDisplay::display(Iext1);
vpDisplay::display(Iext2);
}
robot.get_eJe(eJe);
task.set_eJe(eJe);
wMc = robot.getPosition();
cMo = wMc.inverse() * wMo;
sphere.track(cMo);
// Set the current visual feature
computeVisualFeatures(sphere, s);
v = task.computeControlLaw();
robot.setVelocity(vpRobot::CAMERA_FRAME, v);
sim.setCameraPositionRelObj(cMo);
// Compute the position of the external view which is fixed in the object frame
camoMf.buildFrom(0, 0.0, 2.5, 0, vpMath::rad(150), 0);
camoMf = camoMf * (sim.get_fMo().inverse());
if (opt_plot) {
plotter->plot(0, iter, task.getError());
plotter->plot(1, iter, v);
}
if (opt_display) {
// Get the internal and external views
sim.getInternalImage(Iint);
sim.getExternalImage(Iext1);
sim.getExternalImage(Iext2, camoMf);
// Display the object frame (current and desired position)
vpDisplay::displayFrame(Iint, cMo, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iint, cdMo, camera, 0.2, vpColor::none);
// Display the camera frame, the object frame the world reference
// frame
vpDisplay::displayFrame(Iext1, sim.getExternalCameraPosition() * sim.get_fMo() * cMo.inverse(), camera, 0.2,
vpColor::none);
vpDisplay::displayFrame(Iext1, sim.getExternalCameraPosition() * sim.get_fMo(), camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iext1, sim.getExternalCameraPosition(), camera, 0.2, vpColor::none);
// Display the world reference frame and the object frame
vpDisplay::displayFrame(Iext2, camoMf, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iext2, camoMf * sim.get_fMo(), camera, 0.05, vpColor::none);
vpDisplay::displayText(Iint, 20, 20, "Click to stop visual servo", vpColor::red);
std::stringstream ss;
ss << "Loop time: " << t - t_prev << " ms";
vpDisplay::displayText(Iint, 40, 20, ss.str(), vpColor::red);
if (vpDisplay::getClick(Iint, false)) {
stop = true;
}
vpDisplay::flush(Iint);
vpDisplay::flush(Iext1);
vpDisplay::flush(Iext2);
vpTime::wait(t, sampling_time * 1000); // Wait ms
}
std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
}
if (opt_plot && plotter != nullptr) {
vpDisplay::display(Iint);
sim.getInternalImage(Iint);
vpDisplay::displayFrame(Iint, cMo, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iint, cdMo, camera, 0.2, vpColor::none);
vpDisplay::displayText(Iint, 20, 20, "Click to quit", vpColor::red);
if (vpDisplay::getClick(Iint)) {
stop = true;
}
vpDisplay::flush(Iint);
delete plotter;
}
task.print();
exit_status = EXIT_SUCCESS;
}
catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
exit_status = EXIT_FAILURE;
}
#if (VISP_CXX_STANDARD < VISP_CXX_STANDARD_11)
for (unsigned int i = 0; i < NB_DISPLAYS; ++i) {
delete display[i];
}
#endif
return exit_status;
}
#elif !(defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
int main()
{
std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
return EXIT_SUCCESS;
}
#else
int main()
{
std::cout << "You do not have X11, or GDI (Graphical Device Interface), or GTK functionalities to display images..."
<< std::endl;
std::cout << "Tip if you are on a unix-like system:" << std::endl;
std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
std::cout << "Tip if you are on a windows-like system:" << std::endl;
std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
return EXIT_SUCCESS;
}
#endif
|