1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
/*
* Simd Library (http://ermig1979.github.io/Simd).
*
* Copyright (c) 2011-2022 Yermalayeu Ihar.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __SimdAlphaBlending_h__
#define __SimdAlphaBlending_h__
#include "Simd/SimdMath.h"
#include "Simd/SimdStore.h"
namespace Simd
{
namespace Base
{
SIMD_INLINE int DivideBy255(int value)
{
return (value + 1 + (value >> 8)) >> 8;
}
template<bool argb> void AlphaPremultiply(const uint8_t* src, uint8_t* dst);
template<> SIMD_INLINE void AlphaPremultiply<false>(const uint8_t* src, uint8_t* dst)
{
int alpha = src[3];
dst[0] = DivideBy255(src[0] * alpha);
dst[1] = DivideBy255(src[1] * alpha);
dst[2] = DivideBy255(src[2] * alpha);
dst[3] = alpha;
}
template<> SIMD_INLINE void AlphaPremultiply<true>(const uint8_t* src, uint8_t* dst)
{
int alpha = src[0];
dst[0] = alpha;
dst[1] = DivideBy255(src[1] * alpha);
dst[2] = DivideBy255(src[2] * alpha);
dst[3] = DivideBy255(src[3] * alpha);
}
template<bool argb> void AlphaUnpremultiply(const uint8_t* src, uint8_t* dst);
template<> SIMD_INLINE void AlphaUnpremultiply<false>(const uint8_t* src, uint8_t* dst)
{
float alpha = src[3] ? 255.00001f / src[3] : 0.0f;
dst[0] = RestrictRange(int(src[0] * alpha));
dst[1] = RestrictRange(int(src[1] * alpha));
dst[2] = RestrictRange(int(src[2] * alpha));
dst[3] = src[3];
}
template<> SIMD_INLINE void AlphaUnpremultiply<true>(const uint8_t* src, uint8_t* dst)
{
float alpha = src[0] ? 255.00001f / src[0] : 0.0f;
dst[0] = src[0];
dst[1] = RestrictRange(int(src[1] * alpha));
dst[2] = RestrictRange(int(src[2] * alpha));
dst[3] = RestrictRange(int(src[3] * alpha));
}
}
#ifdef SIMD_SSE41_ENABLE
namespace Sse41
{
SIMD_INLINE __m128i Divide16iBy255(__m128i value)
{
return _mm_mulhi_epi16(_mm_add_epi16(value, K16_0001), K16_0101);
}
SIMD_INLINE __m128i Divide16uBy255(__m128i value)
{
return _mm_mulhi_epu16(_mm_add_epi16(value, K16_0001), K16_0101);
}
SIMD_INLINE __m128i AlphaBlending16i(__m128i src, __m128i dst, __m128i alpha)
{
return Divide16uBy255(_mm_add_epi16(_mm_mullo_epi16(src, alpha), _mm_mullo_epi16(dst, _mm_sub_epi16(K16_00FF, alpha))));
}
template <bool align> SIMD_INLINE void AlphaBlending(const __m128i* src, __m128i* dst, __m128i alpha)
{
__m128i _src = Load<align>(src);
__m128i _dst = Load<align>(dst);
__m128i lo = AlphaBlending16i(_mm_unpacklo_epi8(_src, K_ZERO), _mm_unpacklo_epi8(_dst, K_ZERO), _mm_unpacklo_epi8(alpha, K_ZERO));
__m128i hi = AlphaBlending16i(_mm_unpackhi_epi8(_src, K_ZERO), _mm_unpackhi_epi8(_dst, K_ZERO), _mm_unpackhi_epi8(alpha, K_ZERO));
Store<align>(dst, _mm_packus_epi16(lo, hi));
}
template <bool align> SIMD_INLINE void AlphaBlending2x(const __m128i* src0, __m128i alpha0, const __m128i* src1, __m128i alpha1, __m128i* dst)
{
__m128i _dst = Load<align>(dst);
__m128i lo = _mm_unpacklo_epi8(_dst, K_ZERO);
__m128i hi = _mm_unpackhi_epi8(_dst, K_ZERO);
__m128i _src0 = Load<align>(src0);
lo = AlphaBlending16i(_mm_unpacklo_epi8(_src0, K_ZERO), lo, _mm_unpacklo_epi8(alpha0, K_ZERO));
hi = AlphaBlending16i(_mm_unpackhi_epi8(_src0, K_ZERO), hi, _mm_unpackhi_epi8(alpha0, K_ZERO));
__m128i _src1 = Load<align>(src1);
lo = AlphaBlending16i(_mm_unpacklo_epi8(_src1, K_ZERO), lo, _mm_unpacklo_epi8(alpha1, K_ZERO));
hi = AlphaBlending16i(_mm_unpackhi_epi8(_src1, K_ZERO), hi, _mm_unpackhi_epi8(alpha1, K_ZERO));
Store<align>(dst, _mm_packus_epi16(lo, hi));
}
template <bool align> SIMD_INLINE void AlphaFilling(__m128i* dst, __m128i channelLo, __m128i channelHi, __m128i alpha)
{
__m128i _dst = Load<align>(dst);
__m128i lo = AlphaBlending16i(channelLo, _mm_unpacklo_epi8(_dst, K_ZERO), _mm_unpacklo_epi8(alpha, K_ZERO));
__m128i hi = AlphaBlending16i(channelHi, _mm_unpackhi_epi8(_dst, K_ZERO), _mm_unpackhi_epi8(alpha, K_ZERO));
Store<align>(dst, _mm_packus_epi16(lo, hi));
}
SIMD_INLINE __m128i AlphaPremultiply16i(__m128i value, __m128i alpha)
{
return Divide16uBy255(_mm_mullo_epi16(value, alpha));
}
}
#endif
#ifdef SIMD_AVX2_ENABLE
namespace Avx2
{
SIMD_INLINE __m256i Divide16iBy255(__m256i value)
{
return _mm256_mulhi_epi16(_mm256_add_epi16(value, K16_0001), K16_0101);
}
SIMD_INLINE __m256i Divide16uBy255(__m256i value)
{
return _mm256_mulhi_epu16(_mm256_add_epi16(value, K16_0001), K16_0101);
}
SIMD_INLINE __m256i AlphaBlending16i(__m256i src, __m256i dst, __m256i alpha)
{
return Divide16uBy255(_mm256_add_epi16(_mm256_mullo_epi16(src, alpha), _mm256_mullo_epi16(dst, _mm256_sub_epi16(K16_00FF, alpha))));
}
template <bool align> SIMD_INLINE void AlphaBlending(const __m256i* src, __m256i* dst, __m256i alpha)
{
__m256i _src = Load<align>(src);
__m256i _dst = Load<align>(dst);
__m256i lo = AlphaBlending16i(_mm256_unpacklo_epi8(_src, K_ZERO), _mm256_unpacklo_epi8(_dst, K_ZERO), _mm256_unpacklo_epi8(alpha, K_ZERO));
__m256i hi = AlphaBlending16i(_mm256_unpackhi_epi8(_src, K_ZERO), _mm256_unpackhi_epi8(_dst, K_ZERO), _mm256_unpackhi_epi8(alpha, K_ZERO));
Store<align>(dst, _mm256_packus_epi16(lo, hi));
}
template <bool align> SIMD_INLINE void AlphaBlending2x(const __m256i* src0, __m256i alpha0, const __m256i* src1, __m256i alpha1, __m256i* dst)
{
__m256i _dst = Load<align>(dst);
__m256i lo = _mm256_unpacklo_epi8(_dst, K_ZERO);
__m256i hi = _mm256_unpackhi_epi8(_dst, K_ZERO);
__m256i _src0 = Load<align>(src0);
lo = AlphaBlending16i(_mm256_unpacklo_epi8(_src0, K_ZERO), lo, _mm256_unpacklo_epi8(alpha0, K_ZERO));
hi = AlphaBlending16i(_mm256_unpackhi_epi8(_src0, K_ZERO), hi, _mm256_unpackhi_epi8(alpha0, K_ZERO));
__m256i _src1 = Load<align>(src1);
lo = AlphaBlending16i(_mm256_unpacklo_epi8(_src1, K_ZERO), lo, _mm256_unpacklo_epi8(alpha1, K_ZERO));
hi = AlphaBlending16i(_mm256_unpackhi_epi8(_src1, K_ZERO), hi, _mm256_unpackhi_epi8(alpha1, K_ZERO));
Store<align>(dst, _mm256_packus_epi16(lo, hi));
}
}
#endif
#ifdef SIMD_AVX512BW_ENABLE
namespace Avx512bw
{
SIMD_INLINE __m512i Divide16iBy255(__m512i value)
{
return _mm512_mulhi_epi16(_mm512_add_epi16(value, K16_0001), K16_0101);
}
SIMD_INLINE __m512i Divide16uBy255(__m512i value)
{
return _mm512_mulhi_epu16(_mm512_add_epi16(value, K16_0001), K16_0101);
}
}
#endif
}
#endif
|