1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
/*
* Simd Library (http://ermig1979.github.io/Simd).
*
* Copyright (c) 2011-2022 Yermalayeu Ihar.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __SimdPow_h__
#define __SimdPow_h__
#include "Simd/SimdMath.h"
namespace Simd
{
namespace Base
{
SIMD_INLINE float Pow(float basis, float exponent)
{
return ::expf(::logf(basis)*exponent);
}
}
#ifdef SIMD_SSE41_ENABLE
namespace Sse41
{
class Pow
{
__m128i _exponent, _mantissa;
__m128 _one;
SIMD_INLINE __m128 Poly5(__m128 x, float a, float b, float c, float d, float e, float f) const
{
__m128 p = _mm_set1_ps(f);
p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(e));
p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(d));
p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(c));
p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(b));
p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(a));
return p;
}
SIMD_INLINE __m128 Exp2(__m128 x) const
{
x = _mm_max_ps(_mm_min_ps(x, _mm_set1_ps(129.00000f)), _mm_set1_ps(-126.99999f));
__m128i ipart = _mm_cvtps_epi32(_mm_sub_ps(x, _mm_set1_ps(0.5f)));
__m128 fpart = _mm_sub_ps(x, _mm_cvtepi32_ps(ipart));
__m128 expipart = _mm_castsi128_ps(_mm_slli_epi32(_mm_add_epi32(ipart, _mm_set1_epi32(127)), 23));
__m128 expfpart = Poly5(fpart, 9.9999994e-1f, 6.9315308e-1f, 2.4015361e-1f, 5.5826318e-2f, 8.9893397e-3f, 1.8775767e-3f);
return _mm_mul_ps(expipart, expfpart);
}
SIMD_INLINE __m128 Log2(__m128 x) const
{
__m128i i = _mm_castps_si128(x);
__m128 e = _mm_cvtepi32_ps(_mm_sub_epi32(_mm_srli_epi32(_mm_and_si128(i, _exponent), 23), _mm_set1_epi32(127)));
__m128 m = _mm_or_ps(_mm_castsi128_ps(_mm_and_si128(i, _mantissa)), _one);
__m128 p = Poly5(m, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f, 3.1821337e-1f, -3.4436006e-2f);
return _mm_add_ps(_mm_mul_ps(p, _mm_sub_ps(m, _one)), e);
}
public:
SIMD_INLINE Pow()
{
_exponent = _mm_set1_epi32(0x7F800000);
_mantissa = _mm_set1_epi32(0x007FFFFF);
_one = _mm_set1_ps(1.0f);
}
SIMD_INLINE __m128 operator() (__m128 basis, __m128 exponent) const
{
return Exp2(_mm_mul_ps(Log2(basis), exponent));
}
};
}
#endif //SIMD_SSE41_ENABLE
#ifdef SIMD_AVX2_ENABLE
namespace Avx2
{
class Pow
{
__m256i _exponent, _mantissa;
__m256 _one;
SIMD_INLINE __m256 Poly5(__m256 x, float a, float b, float c, float d, float e, float f) const
{
__m256 p = _mm256_set1_ps(f);
p = _mm256_fmadd_ps(x, p, _mm256_set1_ps(e));
p = _mm256_fmadd_ps(x, p, _mm256_set1_ps(d));
p = _mm256_fmadd_ps(x, p, _mm256_set1_ps(c));
p = _mm256_fmadd_ps(x, p, _mm256_set1_ps(b));
p = _mm256_fmadd_ps(x, p, _mm256_set1_ps(a));
return p;
}
SIMD_INLINE __m256 Exp2(__m256 x) const
{
x = _mm256_max_ps(_mm256_min_ps(x, _mm256_set1_ps(129.00000f)), _mm256_set1_ps(-126.99999f));
__m256i ipart = _mm256_cvtps_epi32(_mm256_sub_ps(x, _mm256_set1_ps(0.5f)));
__m256 fpart = _mm256_sub_ps(x, _mm256_cvtepi32_ps(ipart));
__m256 expipart = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_add_epi32(ipart, _mm256_set1_epi32(127)), 23));
__m256 expfpart = Poly5(fpart, 9.9999994e-1f, 6.9315308e-1f, 2.4015361e-1f, 5.5826318e-2f, 8.9893397e-3f, 1.8775767e-3f);
return _mm256_mul_ps(expipart, expfpart);
}
SIMD_INLINE __m256 Log2(__m256 x) const
{
__m256i i = _mm256_castps_si256(x);
__m256 e = _mm256_cvtepi32_ps(_mm256_sub_epi32(_mm256_srli_epi32(_mm256_and_si256(i, _exponent), 23), _mm256_set1_epi32(127)));
__m256 m = _mm256_or_ps(_mm256_castsi256_ps(_mm256_and_si256(i, _mantissa)), _one);
__m256 p = Poly5(m, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f, 3.1821337e-1f, -3.4436006e-2f);
return _mm256_fmadd_ps(p, _mm256_sub_ps(m, _one), e);
}
public:
SIMD_INLINE Pow()
{
_exponent = _mm256_set1_epi32(0x7F800000);
_mantissa = _mm256_set1_epi32(0x007FFFFF);
_one = _mm256_set1_ps(1.0f);
}
SIMD_INLINE __m256 operator()(__m256 basis, __m256 exponent) const
{
return Exp2(_mm256_mul_ps(Log2(basis), exponent));
}
};
}
#endif //SIMD_AVX2_ENABLE
#ifdef SIMD_NEON_ENABLE
namespace Neon
{
class Pow
{
int32x4_t _exponent, _mantissa;
float32x4_t _one;
SIMD_INLINE float32x4_t Poly5(float32x4_t x, float a, float b, float c, float d, float e, float f) const
{
float32x4_t p = vdupq_n_f32(f);
p = vmlaq_f32(vdupq_n_f32(e), x, p);
p = vmlaq_f32(vdupq_n_f32(d), x, p);
p = vmlaq_f32(vdupq_n_f32(c), x, p);
p = vmlaq_f32(vdupq_n_f32(b), x, p);
p = vmlaq_f32(vdupq_n_f32(a), x, p);
return p;
}
SIMD_INLINE float32x4_t Exp2(float32x4_t x) const
{
x = vmaxq_f32(vminq_f32(x, vdupq_n_f32(129.00000f)), vdupq_n_f32(-126.99999f));
int32x4_t ipart = vcvtq_s32_f32(vsubq_f32(x, vdupq_n_f32(0.5f)));
float32x4_t fpart = vsubq_f32(x, vcvtq_f32_s32(ipart));
float32x4_t expipart = vreinterpretq_f32_s32(vshlq_n_s32(vaddq_s32(ipart, vdupq_n_s32(127)), 23));
float32x4_t expfpart = Poly5(fpart, 9.9999994e-1f, 6.9315308e-1f, 2.4015361e-1f, 5.5826318e-2f, 8.9893397e-3f, 1.8775767e-3f);
return vmulq_f32(expipart, expfpart);
}
SIMD_INLINE float32x4_t Log2(float32x4_t x) const
{
int32x4_t i = vreinterpretq_s32_f32(x);
float32x4_t e = vcvtq_f32_s32(vsubq_s32(vshrq_n_s32(vandq_s32(i, _exponent), 23), vdupq_n_s32(127)));
float32x4_t m = Or(vreinterpretq_f32_s32(vandq_s32(i, _mantissa)), _one);
float32x4_t p = Poly5(m, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f, 3.1821337e-1f, -3.4436006e-2f);
return vaddq_f32(vmulq_f32(p, vsubq_f32(m, _one)), e);
}
public:
SIMD_INLINE Pow()
{
_exponent = vdupq_n_s32(0x7F800000);
_mantissa = vdupq_n_s32(0x007FFFFF);
_one = vdupq_n_f32(1.0f);
}
SIMD_INLINE float32x4_t operator() (float32x4_t basis, float32x4_t exponent) const
{
return Exp2(vmulq_f32(Log2(basis), exponent));
}
};
}
#endif //SIMD_NEON_ENABLE
}
#endif//__SimdPow_h__
|