File: SimdPow.h

package info (click to toggle)
visp 3.7.0-7
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 166,380 kB
  • sloc: cpp: 392,705; ansic: 224,448; xml: 23,444; python: 13,701; java: 4,792; sh: 206; objc: 145; makefile: 118
file content (205 lines) | stat: -rw-r--r-- 8,434 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/*
* Simd Library (http://ermig1979.github.io/Simd).
*
* Copyright (c) 2011-2022 Yermalayeu Ihar.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __SimdPow_h__
#define __SimdPow_h__

#include "Simd/SimdMath.h"

namespace Simd
{
    namespace Base
    {
        SIMD_INLINE float Pow(float basis, float exponent)
        {
            return ::expf(::logf(basis)*exponent);
        }
    }

#ifdef SIMD_SSE41_ENABLE    
    namespace Sse41
    {
        class Pow
        {
            __m128i _exponent, _mantissa;
            __m128 _one;

            SIMD_INLINE __m128 Poly5(__m128 x, float a, float b, float c, float d, float e, float f) const
            {
                __m128 p = _mm_set1_ps(f);
                p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(e));
                p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(d));
                p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(c));
                p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(b));
                p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(a));
                return p;
            }

            SIMD_INLINE __m128 Exp2(__m128 x) const
            {
                x = _mm_max_ps(_mm_min_ps(x, _mm_set1_ps(129.00000f)), _mm_set1_ps(-126.99999f));
                __m128i ipart = _mm_cvtps_epi32(_mm_sub_ps(x, _mm_set1_ps(0.5f)));
                __m128 fpart = _mm_sub_ps(x, _mm_cvtepi32_ps(ipart));
                __m128 expipart = _mm_castsi128_ps(_mm_slli_epi32(_mm_add_epi32(ipart, _mm_set1_epi32(127)), 23));
                __m128 expfpart = Poly5(fpart, 9.9999994e-1f, 6.9315308e-1f, 2.4015361e-1f, 5.5826318e-2f, 8.9893397e-3f, 1.8775767e-3f);
                return _mm_mul_ps(expipart, expfpart);
            }

            SIMD_INLINE __m128 Log2(__m128 x) const
            {
                __m128i i = _mm_castps_si128(x);
                __m128 e = _mm_cvtepi32_ps(_mm_sub_epi32(_mm_srli_epi32(_mm_and_si128(i, _exponent), 23), _mm_set1_epi32(127)));
                __m128 m = _mm_or_ps(_mm_castsi128_ps(_mm_and_si128(i, _mantissa)), _one);
                __m128 p = Poly5(m, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f, 3.1821337e-1f, -3.4436006e-2f);
                return _mm_add_ps(_mm_mul_ps(p, _mm_sub_ps(m, _one)), e);
            }

        public:

            SIMD_INLINE Pow()
            {
                _exponent = _mm_set1_epi32(0x7F800000);
                _mantissa = _mm_set1_epi32(0x007FFFFF);
                _one = _mm_set1_ps(1.0f);
            }

            SIMD_INLINE __m128 operator() (__m128 basis, __m128 exponent) const 
            {
                return Exp2(_mm_mul_ps(Log2(basis), exponent));
            }            
        };
    }
#endif //SIMD_SSE41_ENABLE   

#ifdef SIMD_AVX2_ENABLE    
    namespace Avx2
    {
        class Pow
        {
            __m256i _exponent, _mantissa;
            __m256 _one;

            SIMD_INLINE __m256 Poly5(__m256 x, float a, float b, float c, float d, float e, float f) const
            {
                __m256 p = _mm256_set1_ps(f);
                p = _mm256_fmadd_ps(x, p, _mm256_set1_ps(e));
                p = _mm256_fmadd_ps(x, p, _mm256_set1_ps(d));
                p = _mm256_fmadd_ps(x, p, _mm256_set1_ps(c));
                p = _mm256_fmadd_ps(x, p, _mm256_set1_ps(b));
                p = _mm256_fmadd_ps(x, p, _mm256_set1_ps(a));
                return p;
            }

            SIMD_INLINE __m256 Exp2(__m256 x) const
            {
                x = _mm256_max_ps(_mm256_min_ps(x, _mm256_set1_ps(129.00000f)), _mm256_set1_ps(-126.99999f));
                __m256i ipart = _mm256_cvtps_epi32(_mm256_sub_ps(x, _mm256_set1_ps(0.5f)));
                __m256 fpart = _mm256_sub_ps(x, _mm256_cvtepi32_ps(ipart));
                __m256 expipart = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_add_epi32(ipart, _mm256_set1_epi32(127)), 23));
                __m256 expfpart = Poly5(fpart, 9.9999994e-1f, 6.9315308e-1f, 2.4015361e-1f, 5.5826318e-2f, 8.9893397e-3f, 1.8775767e-3f);
                return _mm256_mul_ps(expipart, expfpart);
            }

            SIMD_INLINE __m256 Log2(__m256 x) const
            {
                __m256i i = _mm256_castps_si256(x);
                __m256 e = _mm256_cvtepi32_ps(_mm256_sub_epi32(_mm256_srli_epi32(_mm256_and_si256(i, _exponent), 23), _mm256_set1_epi32(127)));
                __m256 m = _mm256_or_ps(_mm256_castsi256_ps(_mm256_and_si256(i, _mantissa)), _one);
                __m256 p = Poly5(m, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f, 3.1821337e-1f, -3.4436006e-2f);
                return _mm256_fmadd_ps(p, _mm256_sub_ps(m, _one), e);
            }

        public:

            SIMD_INLINE Pow()
            {
                _exponent = _mm256_set1_epi32(0x7F800000);
                _mantissa = _mm256_set1_epi32(0x007FFFFF);
                _one = _mm256_set1_ps(1.0f);
            }

            SIMD_INLINE __m256 operator()(__m256 basis, __m256 exponent) const
            {
                return Exp2(_mm256_mul_ps(Log2(basis), exponent));
            }
        };
    }
#endif //SIMD_AVX2_ENABLE

#ifdef SIMD_NEON_ENABLE    
    namespace Neon
    {
        class Pow
        {
            int32x4_t _exponent, _mantissa;
            float32x4_t _one;

            SIMD_INLINE float32x4_t Poly5(float32x4_t x, float a, float b, float c, float d, float e, float f) const
            {
                float32x4_t p = vdupq_n_f32(f);
                p = vmlaq_f32(vdupq_n_f32(e), x, p);
                p = vmlaq_f32(vdupq_n_f32(d), x, p);
                p = vmlaq_f32(vdupq_n_f32(c), x, p);
                p = vmlaq_f32(vdupq_n_f32(b), x, p);
                p = vmlaq_f32(vdupq_n_f32(a), x, p);
                return p;
            }

            SIMD_INLINE float32x4_t Exp2(float32x4_t x) const
            {
                x = vmaxq_f32(vminq_f32(x, vdupq_n_f32(129.00000f)), vdupq_n_f32(-126.99999f));
                int32x4_t ipart = vcvtq_s32_f32(vsubq_f32(x, vdupq_n_f32(0.5f)));
                float32x4_t fpart = vsubq_f32(x, vcvtq_f32_s32(ipart));
                float32x4_t expipart = vreinterpretq_f32_s32(vshlq_n_s32(vaddq_s32(ipart, vdupq_n_s32(127)), 23));
                float32x4_t expfpart = Poly5(fpart, 9.9999994e-1f, 6.9315308e-1f, 2.4015361e-1f, 5.5826318e-2f, 8.9893397e-3f, 1.8775767e-3f);
                return vmulq_f32(expipart, expfpart);
            }

            SIMD_INLINE float32x4_t Log2(float32x4_t x) const
            {
                int32x4_t i = vreinterpretq_s32_f32(x);
                float32x4_t e = vcvtq_f32_s32(vsubq_s32(vshrq_n_s32(vandq_s32(i, _exponent), 23), vdupq_n_s32(127)));
                float32x4_t m = Or(vreinterpretq_f32_s32(vandq_s32(i, _mantissa)), _one);
                float32x4_t p = Poly5(m, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f, 3.1821337e-1f, -3.4436006e-2f);
                return vaddq_f32(vmulq_f32(p, vsubq_f32(m, _one)), e);
            }

        public:

            SIMD_INLINE Pow()
            {
                _exponent = vdupq_n_s32(0x7F800000);
                _mantissa = vdupq_n_s32(0x007FFFFF);
                _one = vdupq_n_f32(1.0f);
            }

            SIMD_INLINE float32x4_t operator() (float32x4_t basis, float32x4_t exponent) const
            {
                return Exp2(vmulq_f32(Log2(basis), exponent));
            }
        };
    }
#endif //SIMD_NEON_ENABLE 
}

#endif//__SimdPow_h__