File: ukf-linear-example.cpp

package info (click to toggle)
visp 3.7.0-7
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 166,380 kB
  • sloc: cpp: 392,705; ansic: 224,448; xml: 23,444; python: 13,701; java: 4,792; sh: 206; objc: 145; makefile: 118
file content (286 lines) | stat: -rw-r--r-- 8,722 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/*
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2024 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 */

/** \example ukf-linear-example.cpp
 * Example of a simple linear use-case of the Unscented Kalman Filter (UKF). Using a UKF
 * in this case is not necessary, it is done for learning purpose only.
 *
 * The system we are interested in is a system moving on a 2D-plane.
 *
 * The state vector of the UKF is:
 * \f[
 * \begin{array}{lcl}
 *   \textbf{x}[0] &=& x \\
 *   \textbf{x}[1] &=& \dot{x} \\
 *   \textbf{x}[1] &=& y \\
 *   \textbf{x}[2] &=& \dot{y}
 * \end{array}
 * \f]
 *
 * The measurement \f$ \textbf{z} \f$ corresponds to the position along the x-axis
 * and y-axis. The measurement vector can be written as:
 * \f[
 * \begin{array}{lcl}
 *   \textbf{z}[0] &=& x \\
 *   \textbf{z}[1] &=& y
 * \end{array}
 * \f]
 * Some noise is added to the measurement vector to simulate a sensor which is
 * not perfect.
*/

#include <iostream>

// UKF includes
#include <visp3/core/vpUKSigmaDrawerMerwe.h>
#include <visp3/core/vpUnscentedKalman.h>

// ViSP includes
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpGaussRand.h>
#ifdef VISP_HAVE_DISPLAY
#include <visp3/gui/vpPlot.h>
#endif

#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

/**
 * \brief The process function, that updates the prior.
 *
 * \param[in] chi A sigma point.
 * \param[in] dt The period.
 * \return vpColVector The sigma point projected in the future.
 */
vpColVector fx(const vpColVector &chi, const double &dt)
{
  vpColVector point(4);
  point[0] = chi[1] * dt + chi[0];
  point[1] = chi[1];
  point[2] = chi[3] * dt + chi[2];
  point[3] = chi[3];
  return point;
}

/**
 * \brief The measurement function, that project the prior in the measurement space.
 *
 * \param[in] chi The prior.
 * \return vpColVector The prior projected in the measurement space.
 */
vpColVector hx(const vpColVector &chi)
{
  vpColVector point(2);
  point[0] = chi[0];
  point[1] = chi[2];
  return point;
}

int main(const int argc, const char *argv[])
{
  bool opt_useDisplay = true;
  bool opt_useUserInteraction = true;
  for (int i = 1; i < argc; ++i) {
    std::string arg(argv[i]);
    if (arg == "-d") {
      opt_useDisplay = false;
    }
    if (arg == "-c") {
      opt_useUserInteraction = false;
    }
    else if ((arg == "-h") || (arg == "--help")) {
      std::cout << "SYNOPSIS" << std::endl;
      std::cout << "  " << argv[0] << " [-d][-h]" << std::endl;
      std::cout << std::endl << std::endl;
      std::cout << "DETAILS" << std::endl;
      std::cout << "  -d" << std::endl;
      std::cout << "    Deactivate display." << std::endl;
      std::cout << "  -c" << std::endl;
      std::cout << "    Deactivate user interaction." << std::endl;
      std::cout << std::endl;
      std::cout << "  -h, --help" << std::endl;
      return 0;
    }
  }

  const double dt = 0.01; // Period of 1s
  const double gt_dx = 0.01; // Ground truth displacement along x axis between two measurements
  const double gt_dy = 0.005; // Ground truth displacement along x axis between two measurements
  vpColVector gt_dX(2); // Ground truth displacement between two measurements
  gt_dX[0] = gt_dx;
  gt_dX[1] = gt_dy;
  const double gt_vx = gt_dx / dt; // Ground truth velocity along x axis
  const double gt_vy = gt_dy / dt; // Ground truth velocity along y axis
  const double processVariance = 0.000004;
  const double sigmaXmeas = 0.05; // Standard deviation of the measure along the x-axis
  const double sigmaYmeas = 0.05; // Standard deviation of the measure along the y-axis

  // Initialize the attributes of the UKF
  std::shared_ptr<vpUKSigmaDrawerAbstract> drawer = std::make_shared<vpUKSigmaDrawerMerwe>(4, 0.3, 2., -1.);
  vpMatrix P0(4, 4); //  The initial guess of the process covariance
  P0.eye(4, 4);
  P0 = P0 * 1.;
  vpMatrix R(2, 2); // The covariance of the noise introduced by the measurement
  R.eye(2, 2);
  R = R * 0.01;
  vpMatrix Q(4, 4, 0.); // The covariance of the process
  vpMatrix Q1d(2, 2); // The covariance of a process whose states are {x, dx/dt} and for which the variance is 1
  Q1d[0][0] = std::pow(dt, 3) / 3.;
  Q1d[0][1] = std::pow(dt, 2)/2.;
  Q1d[1][0] = std::pow(dt, 2)/2.;
  Q1d[1][1] = dt;
  Q.insert(Q1d, 0, 0);
  Q.insert(Q1d, 2, 2);
  Q = Q * processVariance;
  vpUnscentedKalman::vpProcessFunction f = fx;
  vpUnscentedKalman::vpMeasurementFunction h = hx;

  // Initialize the UKF
  vpUnscentedKalman ukf(Q, R, drawer, f, h);
  ukf.init(vpColVector({ 0., 0.75 * gt_vx, 0., 0.75 * gt_vy }), P0);

#ifdef VISP_HAVE_DISPLAY
  vpPlot *plot = nullptr;
  // Initialize the plot
  if (opt_useDisplay) {
    plot = new vpPlot(4);
    plot->initGraph(0, 3);
    plot->setTitle(0, "Position along X-axis");
    plot->setUnitX(0, "Time (s)");
    plot->setUnitY(0, "Position (m)");
    plot->setLegend(0, 0, "GT");
    plot->setLegend(0, 1, "Measure");
    plot->setLegend(0, 2, "Filtered");

    plot->initGraph(1, 3);
    plot->setTitle(1, "Velocity along X-axis");
    plot->setUnitX(1, "Time (s)");
    plot->setUnitY(1, "Velocity (m/s)");
    plot->setLegend(1, 0, "GT");
    plot->setLegend(1, 1, "Measure");
    plot->setLegend(1, 2, "Filtered");

    plot->initGraph(2, 3);
    plot->setTitle(2, "Position along Y-axis");
    plot->setUnitX(2, "Time (s)");
    plot->setUnitY(2, "Position (m)");
    plot->setLegend(2, 0, "GT");
    plot->setLegend(2, 1, "Measure");
    plot->setLegend(2, 2, "Filtered");

    plot->initGraph(3, 3);
    plot->setTitle(3, "Velocity along Y-axis");
    plot->setUnitX(3, "Time (s)");
    plot->setUnitY(3, "Velocity (m/s)");
    plot->setLegend(3, 0, "GT");
    plot->setLegend(3, 1, "Measure");
    plot->setLegend(3, 2, "Filtered");
  }
#else
  (void)opt_useDisplay;
#endif

  // Initialize measurement noise
  vpGaussRand rngX(sigmaXmeas, 0., 4224);
  vpGaussRand rngY(sigmaYmeas, 0., 2112);

  // Main loop
  vpColVector gt_X(2, 0.);
  vpColVector z_prec(2, 0.);
  for (int i = 0; i < 100; ++i) {
    // Perform the measurement
    double x_meas = gt_X[0] + rngX();
    double y_meas = gt_X[1] + rngY();
    vpColVector z(2);
    z[0] = x_meas;
    z[1] = y_meas;

    // Use the UKF to filter the measurement
    ukf.filter(z, dt);
    vpColVector Xest = ukf.getXest();

#ifdef VISP_HAVE_DISPLAY
    if (opt_useDisplay) {
    // Plot the ground truth, measurement and filtered state
      plot->plot(0, 0, i, gt_X[0]);
      plot->plot(0, 1, i, x_meas);
      plot->plot(0, 2, i, Xest[0]);

      double vX_meas = (x_meas - z_prec[0]) / dt;
      plot->plot(1, 0, i, gt_vx);
      plot->plot(1, 1, i, vX_meas);
      plot->plot(1, 2, i, Xest[1]);

      plot->plot(2, 0, i, gt_X[1]);
      plot->plot(2, 1, i, y_meas);
      plot->plot(2, 2, i, Xest[2]);

      double vY_meas = (y_meas - z_prec[1]) / dt;
      plot->plot(3, 0, i, gt_vy);
      plot->plot(3, 1, i, vY_meas);
      plot->plot(3, 2, i, Xest[3]);
    }
#endif

    // Update
    gt_X += gt_dX;
    z_prec = z;
  }

  if (opt_useUserInteraction) {
    std::cout << "Press Enter to quit..." << std::endl;
    std::cin.get();
  }

#ifdef VISP_HAVE_DISPLAY
  if (opt_useDisplay) {
    delete plot;
  }
#endif

  vpColVector X_GT({ gt_X[0], gt_vx, gt_X[1], gt_vy });
  vpColVector finalError = ukf.getXest() - X_GT;
  const double maxError = 0.12;
  if (finalError.frobeniusNorm() > maxError) {
    std::cerr << "Error: max tolerated error = " << maxError << ", final error = " << finalError.frobeniusNorm() << std::endl;
    return -1;
  }
  return 0;
}
#else
int main()
{
  std::cout << "This example is only available if you compile ViSP in C++11 standard or higher." << std::endl;
  return 0;
}
#endif