1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/** \example ukf-linear-example.cpp
* Example of a simple linear use-case of the Unscented Kalman Filter (UKF). Using a UKF
* in this case is not necessary, it is done for learning purpose only.
*
* The system we are interested in is a system moving on a 2D-plane.
*
* The state vector of the UKF is:
* \f[
* \begin{array}{lcl}
* \textbf{x}[0] &=& x \\
* \textbf{x}[1] &=& \dot{x} \\
* \textbf{x}[1] &=& y \\
* \textbf{x}[2] &=& \dot{y}
* \end{array}
* \f]
*
* The measurement \f$ \textbf{z} \f$ corresponds to the position along the x-axis
* and y-axis. The measurement vector can be written as:
* \f[
* \begin{array}{lcl}
* \textbf{z}[0] &=& x \\
* \textbf{z}[1] &=& y
* \end{array}
* \f]
* Some noise is added to the measurement vector to simulate a sensor which is
* not perfect.
*/
#include <iostream>
// UKF includes
#include <visp3/core/vpUKSigmaDrawerMerwe.h>
#include <visp3/core/vpUnscentedKalman.h>
// ViSP includes
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpGaussRand.h>
#ifdef VISP_HAVE_DISPLAY
#include <visp3/gui/vpPlot.h>
#endif
#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
/**
* \brief The process function, that updates the prior.
*
* \param[in] chi A sigma point.
* \param[in] dt The period.
* \return vpColVector The sigma point projected in the future.
*/
vpColVector fx(const vpColVector &chi, const double &dt)
{
vpColVector point(4);
point[0] = chi[1] * dt + chi[0];
point[1] = chi[1];
point[2] = chi[3] * dt + chi[2];
point[3] = chi[3];
return point;
}
/**
* \brief The measurement function, that project the prior in the measurement space.
*
* \param[in] chi The prior.
* \return vpColVector The prior projected in the measurement space.
*/
vpColVector hx(const vpColVector &chi)
{
vpColVector point(2);
point[0] = chi[0];
point[1] = chi[2];
return point;
}
int main(const int argc, const char *argv[])
{
bool opt_useDisplay = true;
bool opt_useUserInteraction = true;
for (int i = 1; i < argc; ++i) {
std::string arg(argv[i]);
if (arg == "-d") {
opt_useDisplay = false;
}
if (arg == "-c") {
opt_useUserInteraction = false;
}
else if ((arg == "-h") || (arg == "--help")) {
std::cout << "SYNOPSIS" << std::endl;
std::cout << " " << argv[0] << " [-d][-h]" << std::endl;
std::cout << std::endl << std::endl;
std::cout << "DETAILS" << std::endl;
std::cout << " -d" << std::endl;
std::cout << " Deactivate display." << std::endl;
std::cout << " -c" << std::endl;
std::cout << " Deactivate user interaction." << std::endl;
std::cout << std::endl;
std::cout << " -h, --help" << std::endl;
return 0;
}
}
const double dt = 0.01; // Period of 1s
const double gt_dx = 0.01; // Ground truth displacement along x axis between two measurements
const double gt_dy = 0.005; // Ground truth displacement along x axis between two measurements
vpColVector gt_dX(2); // Ground truth displacement between two measurements
gt_dX[0] = gt_dx;
gt_dX[1] = gt_dy;
const double gt_vx = gt_dx / dt; // Ground truth velocity along x axis
const double gt_vy = gt_dy / dt; // Ground truth velocity along y axis
const double processVariance = 0.000004;
const double sigmaXmeas = 0.05; // Standard deviation of the measure along the x-axis
const double sigmaYmeas = 0.05; // Standard deviation of the measure along the y-axis
// Initialize the attributes of the UKF
std::shared_ptr<vpUKSigmaDrawerAbstract> drawer = std::make_shared<vpUKSigmaDrawerMerwe>(4, 0.3, 2., -1.);
vpMatrix P0(4, 4); // The initial guess of the process covariance
P0.eye(4, 4);
P0 = P0 * 1.;
vpMatrix R(2, 2); // The covariance of the noise introduced by the measurement
R.eye(2, 2);
R = R * 0.01;
vpMatrix Q(4, 4, 0.); // The covariance of the process
vpMatrix Q1d(2, 2); // The covariance of a process whose states are {x, dx/dt} and for which the variance is 1
Q1d[0][0] = std::pow(dt, 3) / 3.;
Q1d[0][1] = std::pow(dt, 2)/2.;
Q1d[1][0] = std::pow(dt, 2)/2.;
Q1d[1][1] = dt;
Q.insert(Q1d, 0, 0);
Q.insert(Q1d, 2, 2);
Q = Q * processVariance;
vpUnscentedKalman::vpProcessFunction f = fx;
vpUnscentedKalman::vpMeasurementFunction h = hx;
// Initialize the UKF
vpUnscentedKalman ukf(Q, R, drawer, f, h);
ukf.init(vpColVector({ 0., 0.75 * gt_vx, 0., 0.75 * gt_vy }), P0);
#ifdef VISP_HAVE_DISPLAY
vpPlot *plot = nullptr;
// Initialize the plot
if (opt_useDisplay) {
plot = new vpPlot(4);
plot->initGraph(0, 3);
plot->setTitle(0, "Position along X-axis");
plot->setUnitX(0, "Time (s)");
plot->setUnitY(0, "Position (m)");
plot->setLegend(0, 0, "GT");
plot->setLegend(0, 1, "Measure");
plot->setLegend(0, 2, "Filtered");
plot->initGraph(1, 3);
plot->setTitle(1, "Velocity along X-axis");
plot->setUnitX(1, "Time (s)");
plot->setUnitY(1, "Velocity (m/s)");
plot->setLegend(1, 0, "GT");
plot->setLegend(1, 1, "Measure");
plot->setLegend(1, 2, "Filtered");
plot->initGraph(2, 3);
plot->setTitle(2, "Position along Y-axis");
plot->setUnitX(2, "Time (s)");
plot->setUnitY(2, "Position (m)");
plot->setLegend(2, 0, "GT");
plot->setLegend(2, 1, "Measure");
plot->setLegend(2, 2, "Filtered");
plot->initGraph(3, 3);
plot->setTitle(3, "Velocity along Y-axis");
plot->setUnitX(3, "Time (s)");
plot->setUnitY(3, "Velocity (m/s)");
plot->setLegend(3, 0, "GT");
plot->setLegend(3, 1, "Measure");
plot->setLegend(3, 2, "Filtered");
}
#else
(void)opt_useDisplay;
#endif
// Initialize measurement noise
vpGaussRand rngX(sigmaXmeas, 0., 4224);
vpGaussRand rngY(sigmaYmeas, 0., 2112);
// Main loop
vpColVector gt_X(2, 0.);
vpColVector z_prec(2, 0.);
for (int i = 0; i < 100; ++i) {
// Perform the measurement
double x_meas = gt_X[0] + rngX();
double y_meas = gt_X[1] + rngY();
vpColVector z(2);
z[0] = x_meas;
z[1] = y_meas;
// Use the UKF to filter the measurement
ukf.filter(z, dt);
vpColVector Xest = ukf.getXest();
#ifdef VISP_HAVE_DISPLAY
if (opt_useDisplay) {
// Plot the ground truth, measurement and filtered state
plot->plot(0, 0, i, gt_X[0]);
plot->plot(0, 1, i, x_meas);
plot->plot(0, 2, i, Xest[0]);
double vX_meas = (x_meas - z_prec[0]) / dt;
plot->plot(1, 0, i, gt_vx);
plot->plot(1, 1, i, vX_meas);
plot->plot(1, 2, i, Xest[1]);
plot->plot(2, 0, i, gt_X[1]);
plot->plot(2, 1, i, y_meas);
plot->plot(2, 2, i, Xest[2]);
double vY_meas = (y_meas - z_prec[1]) / dt;
plot->plot(3, 0, i, gt_vy);
plot->plot(3, 1, i, vY_meas);
plot->plot(3, 2, i, Xest[3]);
}
#endif
// Update
gt_X += gt_dX;
z_prec = z;
}
if (opt_useUserInteraction) {
std::cout << "Press Enter to quit..." << std::endl;
std::cin.get();
}
#ifdef VISP_HAVE_DISPLAY
if (opt_useDisplay) {
delete plot;
}
#endif
vpColVector X_GT({ gt_X[0], gt_vx, gt_X[1], gt_vy });
vpColVector finalError = ukf.getXest() - X_GT;
const double maxError = 0.12;
if (finalError.frobeniusNorm() > maxError) {
std::cerr << "Error: max tolerated error = " << maxError << ", final error = " << finalError.frobeniusNorm() << std::endl;
return -1;
}
return 0;
}
#else
int main()
{
std::cout << "This example is only available if you compile ViSP in C++11 standard or higher." << std::endl;
return 0;
}
#endif
|