File: ukf-nonlinear-example.cpp

package info (click to toggle)
visp 3.7.0-7
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 166,380 kB
  • sloc: cpp: 392,705; ansic: 224,448; xml: 23,444; python: 13,701; java: 4,792; sh: 206; objc: 145; makefile: 118
file content (488 lines) | stat: -rw-r--r-- 16,002 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
/*
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2024 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 */

/** \example ukf-nonlinear-example.cpp
 * Example of a simple non-linear use-case of the Unscented Kalman Filter (UKF).
 *
 * The system we are interested in is an aircraft flying in the sky and
 * observed by a radar station. Its velocity is not completely constant: a Gaussian
 * noise is added to the velocity to simulate the effect of wind on the motion of the
 * aircraft.
 *
 * We consider the plan perpendicular to the ground and passing by both the radar
 * station and the aircraft. The x-axis corresponds to the position on the ground
 * and the y-axis to the altitude.
 *
 * The state vector of the UKF corresponds to a constant velocity model and can be written as:
 *  \f[
      \begin{array}{lcl}
        \textbf{x}[0] &=& x \\
        \textbf{x}[1] &=& \dot{x} \\
        \textbf{x}[1] &=& y \\
        \textbf{x}[2] &=& \dot{y}
     \end{array}
    \f]

   The measurement \f$ \textbf{z} \f$ corresponds to the distance and angle between the ground and the aircraft
   observed by the radar station. Be \f$ p_x \f$ and \f$ p_y \f$ the position of the radar station
   along the x and y axis, the measurement vector can be written as:
   \f[
      \begin{array}{lcl}
        \textbf{z}[0] &=& \sqrt{(p_x^i - x)^2 + (p_y^i - y)^2} \\
        \textbf{z}[1] &=& \tan^{-1}{\frac{y - p_y}{x - p_x}}
     \end{array}
   \f]

 * Some noise is added to the measurement vector to simulate a sensor which is
 * not perfect.
 *
 * The mean of several angles must be computed in the Unscented Transform. The definition we chose to use
   is the following:

   \f$ mean(\boldsymbol{\theta}) = atan2 (\frac{\sum_{i=1}^n \sin{\theta_i}}{n}, \frac{\sum_{i=1}^n \cos{\theta_i}}{n})  \f$

   As the Unscented Transform uses a weighted mean, the actual implementation of the weighted mean
   of several angles is the following:

   \f$ mean_{weighted}(\boldsymbol{\theta}) = atan2 (\sum_{i=1}^n w_m^i \sin{\theta_i}, \sum_{i=1}^n w_m^i \cos{\theta_i})  \f$

   where \f$ w_m^i \f$ is the weight associated to the \f$ i^{th} \f$ measurements for the weighted mean.

   Additionally, the addition and subtraction of angles must be carefully done, as the result
   must stay in the interval \f$[- \pi ; \pi ]\f$ or \f$[0 ; 2 \pi ]\f$ . We decided to use
   the interval \f$[- \pi ; \pi ]\f$ .
*/

#include <iostream>

// UKF includes
#include <visp3/core/vpUKSigmaDrawerMerwe.h>
#include <visp3/core/vpUnscentedKalman.h>

// ViSP includes
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpGaussRand.h>
#ifdef VISP_HAVE_DISPLAY
#include <visp3/gui/vpPlot.h>
#endif

#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

namespace
{
/**
 * \brief The process function, that updates the prior.
 *
 * \param[in] chi A sigma point.
 * \param[in] dt The period.
 * \return vpColVector The sigma points projected in the future.
 */
vpColVector fx(const vpColVector &chi, const double &dt)
{
  vpColVector point(4);
  point[0] = chi[1] * dt + chi[0];
  point[1] = chi[1];
  point[2] = chi[3] * dt + chi[2];
  point[3] = chi[3];
  return point;
}

/**
 * \brief Normalize the \b angle in the interval [-Pi; Pi].
 *
 * \param[in] angle Angle to normalize.
 * \return double Normalized angle.
 */
double normalizeAngle(const double &angle)
{
  double angleIn0to2pi = vpMath::modulo(angle, 2. * M_PI);
  double angleInMinPiPi = angleIn0to2pi;
  if (angleInMinPiPi > M_PI) {
    // Substract 2 PI to be in interval [-Pi; Pi]
    angleInMinPiPi -= 2. * M_PI;
  }
  return angleInMinPiPi;
}

/**
 * \brief Compute the weighted mean of measurement vectors.
 *
 * \param[in] measurements The measurement vectors, such as measurements[i][0] = range and
 * measurements[i][1] = elevation_angle.
 * \param[in] wm The associated weights.
 * \return vpColVector
 */
vpColVector measurementMean(const std::vector<vpColVector> &measurements, const std::vector<double> &wm)
{
  const unsigned int nbPoints = static_cast<unsigned int>(measurements.size());
  const unsigned int sizeMeasurement = measurements[0].size();
  vpColVector mean(sizeMeasurement, 0.);
  double sumCos(0.);
  double sumSin(0.);
  for (unsigned int i = 0; i < nbPoints; ++i) {
    mean[0] += wm[i] * measurements[i][0];
    sumCos += wm[i] * std::cos(measurements[i][1]);
    sumSin += wm[i] * std::sin(measurements[i][1]);
  }

  mean[1] = std::atan2(sumSin, sumCos);

  return mean;
}

/**
 * \brief Compute the subtraction between two vectors expressed in the measurement space,
 * such as v[0] = range ; v[1] = elevation_angle
 *
 * \param[in] meas Measurement to which we must subtract something.
 * \param[in] toSubtract The something we must subtract.
 * \return vpColVector \b meas - \b toSubtract .
 */
vpColVector measurementResidual(const vpColVector &meas, const vpColVector &toSubtract)
{
  vpColVector res = meas - toSubtract;
  res[1] = normalizeAngle(res[1]);
  return res;
}
}

/**
 * \brief Class that permits to convert the position of the aircraft into
 * range and elevation angle measurements.
 */
class vpRadarStation
{
public:
  /**
   * \brief Construct a new vpRadarStation object.
   *
   * \param[in] x The position on the ground of the radar.
   * \param[in] y The altitude of the radar.
   * \param[in] range_std The standard deviation of the range measurements.
   * \param[in] elev_angle_std The standard deviation of the elevation angle measurements.
   */
  vpRadarStation(const double &x, const double &y, const double &range_std, const double &elev_angle_std)
    : m_x(x)
    , m_y(y)
    , m_rngRange(range_std, 0., 4224)
    , m_rngElevAngle(elev_angle_std, 0., 2112)
  { }

  /**
   * \brief Convert the prior of the UKF into the measurement space.
   *
   * \param chi The prior.
   * \return vpColVector The prior expressed in the measurement space.
   */
  vpColVector state_to_measurement(const vpColVector &chi)
  {
    vpColVector meas(2);
    double dx = chi[0] - m_x;
    double dy = chi[2] - m_y;
    meas[0] = std::sqrt(dx * dx + dy * dy);
    meas[1] = std::atan2(dy, dx);
    return meas;
  }

  /**
   * \brief Perfect measurement of the range and elevation angle that
   * correspond to pos.
   *
   * \param pos The actual position of the aircraft (pos[0]: projection of the position
   * on the ground, pos[1]: altitude).
   * \return vpColVector [0] the range [1] the elevation angle.
   */
  vpColVector measureGT(const vpColVector &pos)
  {
    double dx = pos[0] - m_x;
    double dy = pos[1] - m_y;
    double range = std::sqrt(dx * dx + dy * dy);
    double elevAngle = std::atan2(dy, dx);
    vpColVector measurements(2);
    measurements[0] = range;
    measurements[1] = elevAngle;
    return measurements;
  }

  /**
   * \brief Noisy measurement of the range and elevation angle that
   * correspond to pos.
   *
   * \param pos The actual position of the aircraft (pos[0]: projection of the position
   * on the ground, pos[1]: altitude).
   * \return vpColVector [0] the range [1] the elevation angle.
   */
  vpColVector measureWithNoise(const vpColVector &pos)
  {
    vpColVector measurementsGT = measureGT(pos);
    vpColVector measurementsNoisy = measurementsGT;
    measurementsNoisy[0] += m_rngRange();
    measurementsNoisy[1] += m_rngElevAngle();
    return measurementsNoisy;
  }

private:
  double m_x; // The position on the ground of the radar
  double m_y; // The altitude of the radar
  vpGaussRand m_rngRange; // Noise simulator for the range measurement
  vpGaussRand m_rngElevAngle; // Noise simulator for the elevation angle measurement
};

/**
 * \brief Class to simulate a flying aircraft.
 */
class vpACSimulator
{
public:
  /**
   * \brief Construct a new vpACSimulator object.
   *
   * \param[in] X0 Initial position of the aircraft.
   * \param[in] vel Velocity of the aircraft.
   * \param[in] vel_std Standard deviation of the variation of the velocity.
   */
  vpACSimulator(const vpColVector &X0, const vpColVector &vel, const double &vel_std)
    : m_pos(X0)
    , m_vel(vel)
    , m_rngVel(vel_std, 0.)
  {

  }

  /**
   * \brief Compute the new position of the aircraft after dt seconds have passed
   * since the last update.
   *
   * \param[in] dt Period since the last update.
   * \return vpColVector The new position of the aircraft.
   */
  vpColVector update(const double &dt)
  {
    vpColVector dx = m_vel * dt;
    dx[0] += m_rngVel() * dt;
    dx[1] += m_rngVel() * dt;
    m_pos += dx;
    return m_pos;
  }

private:
  vpColVector m_pos; // Position of the simulated aircraft
  vpColVector m_vel; // Velocity of the simulated aircraft
  vpGaussRand m_rngVel; // Random generator for slight variations of the velocity of the aircraft
};

int main(const int argc, const char *argv[])
{
  bool opt_useDisplay = true;
  bool opt_useUserInteraction = true;
  for (int i = 1; i < argc; ++i) {
    std::string arg(argv[i]);
    if (arg == "-d") {
      opt_useDisplay = false;
    }
    if (arg == "-c") {
      opt_useUserInteraction = false;
    }
    else if ((arg == "-h") || (arg == "--help")) {
      std::cout << "SYNOPSIS" << std::endl;
      std::cout << "  " << argv[0] << " [-d][-h]" << std::endl;
      std::cout << std::endl << std::endl;
      std::cout << "DETAILS" << std::endl;
      std::cout << "  -d" << std::endl;
      std::cout << "    Deactivate display." << std::endl;
      std::cout << "  -c" << std::endl;
      std::cout << "    Deactivate user interaction." << std::endl;
      std::cout << std::endl;
      std::cout << "  -h, --help" << std::endl;
      return 0;
    }
  }

  const double dt = 3.; // Period of 3s
  const double sigmaRange = 5; // Standard deviation of the range measurement: 5m
  const double sigmaElevAngle = vpMath::rad(0.5); // Standard deviation of the elevation angle measurent: 0.5deg
  const double stdevAircraftVelocity = 0.2; // Standard deviation of the velocity of the simulated aircraft, to make it deviate a bit from the constant velocity model
  const double gt_X_init = -500.; // Ground truth initial position along the X-axis, in meters
  const double gt_Y_init = 1000.; // Ground truth initial position along the Y-axis, in meters
  const double gt_vX_init = 100.; // Ground truth initial velocity along the X-axis, in meters
  const double gt_vY_init = 5.; // Ground truth initial velocity along the Y-axis, in meters

  // Initialize the attributes of the UKF
  std::shared_ptr<vpUKSigmaDrawerAbstract> drawer = std::make_shared<vpUKSigmaDrawerMerwe>(4, 0.1, 2., -1.);

  vpMatrix R(2, 2, 0.); // The covariance of the noise introduced by the measurement
  R[0][0] = sigmaRange*sigmaRange;
  R[1][1] = sigmaElevAngle*sigmaElevAngle;

  const double processVariance = 0.1;
  vpMatrix Q(4, 4, 0.); // The covariance of the process
  vpMatrix Q1d(2, 2); // The covariance of a process whose states are {x, dx/dt} and for which the variance is 1
  Q1d[0][0] = std::pow(dt, 3) / 3.;
  Q1d[0][1] = std::pow(dt, 2)/2.;
  Q1d[1][0] = std::pow(dt, 2)/2.;
  Q1d[1][1] = dt;
  Q.insert(Q1d, 0, 0);
  Q.insert(Q1d, 2, 2);
  Q = Q * processVariance;

  vpMatrix P0(4, 4); //  The initial guess of the process covariance
  P0.eye(4, 4);
  P0[0][0] = std::pow(300, 2);
  P0[1][1] = std::pow(30, 2);
  P0[2][2] = std::pow(150, 2);
  P0[3][3] = std::pow(30, 2);

  vpColVector X0(4);
  X0[0] = 0.9 * gt_X_init; // x, i.e. 10% of error with regard to ground truth
  X0[1] = 0.9 * gt_vX_init; // dx/dt, i.e. 10% of error with regard to ground truth
  X0[2] = 0.9 * gt_Y_init; // y, i.e. 10% of error with regard to ground truth
  X0[3] = 0.9 * gt_vY_init; // dy/dt, i.e. 10% of error with regard to ground truth

  vpUnscentedKalman::vpProcessFunction f = fx;
  vpRadarStation radar(0., 0., sigmaRange, sigmaElevAngle);
  using std::placeholders::_1;
  vpUnscentedKalman::vpMeasurementFunction h = std::bind(&vpRadarStation::state_to_measurement, &radar, _1);

  // Initialize the UKF
  vpUnscentedKalman ukf(Q, R, drawer, f, h);
  ukf.init(X0, P0);
  ukf.setMeasurementMeanFunction(measurementMean);
  ukf.setMeasurementResidualFunction(measurementResidual);

#ifdef VISP_HAVE_DISPLAY
  vpPlot *plot = nullptr;
  if (opt_useDisplay) {
  // Initialize the plot
    plot = new vpPlot(4);
    plot->initGraph(0, 2);
    plot->setTitle(0, "Position along X-axis");
    plot->setUnitX(0, "Time (s)");
    plot->setUnitY(0, "Position (m)");
    plot->setLegend(0, 0, "GT");
    plot->setLegend(0, 1, "Filtered");

    plot->initGraph(1, 2);
    plot->setTitle(1, "Velocity along X-axis");
    plot->setUnitX(1, "Time (s)");
    plot->setUnitY(1, "Velocity (m/s)");
    plot->setLegend(1, 0, "GT");
    plot->setLegend(1, 1, "Filtered");

    plot->initGraph(2, 2);
    plot->setTitle(2, "Position along Y-axis");
    plot->setUnitX(2, "Time (s)");
    plot->setUnitY(2, "Position (m)");
    plot->setLegend(2, 0, "GT");
    plot->setLegend(2, 1, "Filtered");

    plot->initGraph(3, 2);
    plot->setTitle(3, "Velocity along Y-axis");
    plot->setUnitX(3, "Time (s)");
    plot->setUnitY(3, "Velocity (m/s)");
    plot->setLegend(3, 0, "GT");
    plot->setLegend(3, 1, "Filtered");
  }
#else
  (void)opt_useDisplay;
#endif

  // Initialize the simulation
  vpColVector ac_pos(2);
  ac_pos[0] = gt_X_init;
  ac_pos[1] = gt_Y_init;
  vpColVector ac_vel(2);
  ac_vel[0] = gt_vX_init;
  ac_vel[1] = gt_vY_init;
  vpACSimulator ac(ac_pos, ac_vel, stdevAircraftVelocity);
  vpColVector gt_Xprec = ac_pos;
  vpColVector gt_Vprec = ac_vel;
  for (int i = 0; i < 500; ++i) {
    // Perform the measurement
    vpColVector gt_X = ac.update(dt);
    vpColVector gt_V = (gt_X - gt_Xprec) / dt;
    vpColVector z = radar.measureWithNoise(gt_X);

    // Use the UKF to filter the measurement
    ukf.filter(z, dt);
    vpColVector Xest = ukf.getXest();

#ifdef VISP_HAVE_DISPLAY
    if (opt_useDisplay) {
    // Plot the ground truth, measurement and filtered state
      plot->plot(0, 0, i, gt_X[0]);
      plot->plot(0, 1, i, Xest[0]);

      plot->plot(1, 0, i, gt_V[0]);
      plot->plot(1, 1, i, Xest[1]);

      plot->plot(2, 0, i, gt_X[1]);
      plot->plot(2, 1, i, Xest[2]);

      plot->plot(3, 0, i, gt_V[1]);
      plot->plot(3, 1, i, Xest[3]);
    }
#endif

    gt_Xprec = gt_X;
    gt_Vprec = gt_V;
  }

  if (opt_useUserInteraction) {
    std::cout << "Press Enter to quit..." << std::endl;
    std::cin.get();
  }

#ifdef VISP_HAVE_DISPLAY
  if (opt_useDisplay) {
    delete plot;
  }
#endif

  vpColVector X_GT({ gt_Xprec[0], gt_Vprec[0], gt_Xprec[1], gt_Vprec[1] });
  vpColVector finalError = ukf.getXest() - X_GT;
  const double maxError = 2.5;
  if (finalError.frobeniusNorm() > maxError) {
    std::cerr << "Error: max tolerated error = " << maxError << ", final error = " << finalError.frobeniusNorm() << std::endl;
    return -1;
  }

  return 0;
}
#else
int main()
{
  std::cout << "This example is only available if you compile ViSP in C++11 standard or higher." << std::endl;
  return 0;
}
#endif