1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
|
/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/*!
\example pf-nonlinear-complex-example.cpp
Example of a complex non-linear use-case of the Particle Filter (PF).
The system we are interested in is a 4-wheel robot, moving at a low velocity.
As such, it can be modeled using a bicycle model.
The state vector of the PF is:
\f[
\begin{array}{lcl}
\textbf{x}[0] &=& x \\
\textbf{x}[1] &=& y \\
\textbf{x}[2] &=& \theta
\end{array}
\f]
where \f$ \theta \f$ is the heading of the robot.
The measurement \f$ \textbf{z} \f$ corresponds to the distance and relative orientation of the
robot with different landmarks. Be \f$ p_x^i \f$ and \f$ p_y^i \f$ the position of the \f$ i^{th} \f$ landmark
along the x and y axis, the measurement vector can be written as:
\f[
\begin{array}{lcl}
\textbf{z}[2i] &=& \sqrt{(p_x^i - x)^2 + (p_y^i - y)^2} \\
\textbf{z}[2i+1] &=& \tan^{-1}{\frac{p_y^i - y}{p_x^i - x}} - \theta
\end{array}
\f]
Some noise is added to the measurement vector to simulate measurements which are
not perfect.
The mean of several angles must be computed in the Particle Fitler inference. The definition we chose to use
is the following:
\f$ mean(\boldsymbol{\theta}) = atan2 (\frac{\sum_{i=1}^n \sin{\theta_i}}{n}, \frac{\sum_{i=1}^n \cos{\theta_i}}{n}) \f$
As the Particle Filter inference uses a weighted mean, the actual implementation of the weighted mean
of several angles is the following:
\f$ mean_{weighted}(\boldsymbol{\theta}) = atan2 (\sum_{i=1}^n w_m^i \sin{\theta_i}, \sum_{i=1}^n w_m^i \cos{\theta_i}) \f$
where \f$ w_m^i \f$ is the weight associated to the \f$ i^{th} \f$ measurements for the weighted mean.
Additionally, the addition and subtraction of angles must be carefully done, as the result
must stay in the interval \f$[- \pi ; \pi ]\f$ or \f$[0 ; 2 \pi ]\f$ . We decided to use
the interval \f$[- \pi ; \pi ]\f$ .
*/
#include <iostream>
// ViSP includes
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpColVector.h>
#include <visp3/core/vpGaussRand.h>
#ifdef VISP_HAVE_DISPLAY
#include <visp3/gui/vpPlot.h>
#endif
// PF includes
#include <visp3/core/vpParticleFilter.h>
#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
namespace
{
/**
* \brief Normalize the \b angle in the interval [-Pi; Pi].
*
* \param[in] angle Angle to normalize.
* \return double Normalized angle.
*/
double normalizeAngle(const double &angle)
{
double angleIn0to2pi = vpMath::modulo(angle, 2. * M_PI);
double angleInMinPiPi = angleIn0to2pi;
if (angleInMinPiPi > M_PI) {
// Substract 2 PI to be in interval [-Pi; Pi]
angleInMinPiPi -= 2. * M_PI;
}
return angleInMinPiPi;
}
/**
* \brief Compute the addition between two vectors expressed in the state space,
* such as v[0] = x ; v[1] = y; v[2] = heading .
*
* \param[in] state State to which we must add something.
* \param[in] toAdd The something we must add.
* \return vpColVector \b state + \b toAdd .
*/
vpColVector stateAdd(const vpColVector &state, const vpColVector &toAdd)
{
vpColVector add = state + toAdd;
add[2] = normalizeAngle(add[2]);
return add;
}
/**
* \brief Compute the weighted mean of state vectors.
*
* \param[in] states The state vectors.
* \param[in] wm The associated weights.
* \return vpColVector
*/
vpColVector stateMean(const std::vector<vpColVector> &states, const std::vector<double> &wm, const vpParticleFilter<vpColVector>::vpStateAddFunction &/*addFunc*/)
{
vpColVector mean(3, 0.);
unsigned int nbPoints = static_cast<unsigned int>(states.size());
double sumCos = 0.;
double sumSin = 0.;
for (unsigned int i = 0; i < nbPoints; ++i) {
mean[0] += wm[i] * states[i][0];
mean[1] += wm[i] * states[i][1];
sumCos += wm[i] * std::cos(states[i][2]);
sumSin += wm[i] * std::sin(states[i][2]);
}
mean[2] = std::atan2(sumSin, sumCos);
return mean;
}
/**
* \brief Compute the commands realising a turn at constant linear velocity.
*
* \param[in] v Constant linear velocity.
* \param[in] angleStart Starting angle (in degrees).
* \param[in] angleStop Stop angle (in degrees).
* \param[in] nbSteps Number of steps to perform the turn.
* \return std::vector<vpColVector> The corresponding list of commands.
*/
std::vector<vpColVector> generateTurnCommands(const double &v, const double &angleStart, const double &angleStop, const unsigned int &nbSteps)
{
std::vector<vpColVector> cmds;
double dTheta = vpMath::rad(angleStop - angleStart) / static_cast<double>(nbSteps - 1);
for (unsigned int i = 0; i < nbSteps; ++i) {
double theta = vpMath::rad(angleStart) + dTheta * static_cast<double>(i);
vpColVector cmd(2);
cmd[0] = v;
cmd[1] = theta;
cmds.push_back(cmd);
}
return cmds;
}
/**
* \brief Generate the list of commands for the simulation.
*
* @return std::vector<vpColVector> The list of commands to use in the simulation
*/
std::vector<vpColVector> generateCommands()
{
std::vector<vpColVector> cmds;
// Starting by an straight line acceleration
unsigned int nbSteps = 30;
double dv = (1.1 - 0.001) / static_cast<double>(nbSteps - 1);
for (unsigned int i = 0; i < nbSteps; ++i) {
vpColVector cmd(2);
cmd[0] = 0.001 + static_cast<double>(i) * dv;
cmd[1] = 0.;
cmds.push_back(cmd);
}
// Left turn
double lastLinearVelocity = cmds[cmds.size() -1][0];
std::vector<vpColVector> leftTurnCmds = generateTurnCommands(lastLinearVelocity, 0, 2, 15);
cmds.insert(cmds.end(), leftTurnCmds.begin(), leftTurnCmds.end());
for (unsigned int i = 0; i < 100; ++i) {
cmds.push_back(cmds[cmds.size() -1]);
}
// Right turn
lastLinearVelocity = cmds[cmds.size() -1][0];
std::vector<vpColVector> rightTurnCmds = generateTurnCommands(lastLinearVelocity, 2, -2, 15);
cmds.insert(cmds.end(), rightTurnCmds.begin(), rightTurnCmds.end());
for (unsigned int i = 0; i < 200; ++i) {
cmds.push_back(cmds[cmds.size() -1]);
}
// Left turn again
lastLinearVelocity = cmds[cmds.size() -1][0];
leftTurnCmds = generateTurnCommands(lastLinearVelocity, -2, 0, 15);
cmds.insert(cmds.end(), leftTurnCmds.begin(), leftTurnCmds.end());
for (unsigned int i = 0; i < 150; ++i) {
cmds.push_back(cmds[cmds.size() -1]);
}
lastLinearVelocity = cmds[cmds.size() -1][0];
leftTurnCmds = generateTurnCommands(lastLinearVelocity, 0, 1, 25);
cmds.insert(cmds.end(), leftTurnCmds.begin(), leftTurnCmds.end());
for (unsigned int i = 0; i < 150; ++i) {
cmds.push_back(cmds[cmds.size() -1]);
}
return cmds;
}
}
/**
* \brief Models the effect of the command on the state model.
*
* \param[in] u The commands. u[0] = velocity ; u[1] = steeringAngle .
* \param[in] x The state model. x[0] = x ; x[1] = y ; x[2] = heading
* \param[in] dt The period.
* \param[in] w The length of the wheelbase.
* \return vpColVector The state model after applying the command.
*/
vpColVector computeMotionFromCommand(const vpColVector &u, const vpColVector &x, const double &dt, const double &w)
{
double heading = x[2];
double vel = u[0];
double steeringAngle = u[1];
double distance = vel * dt;
if (std::abs(steeringAngle) > 0.001) {
// The robot is turning
double beta = (distance / w) * std::tan(steeringAngle);
double radius = w / std::tan(steeringAngle);
double sinh = std::sin(heading);
double sinhb = std::sin(heading + beta);
double cosh = std::cos(heading);
double coshb = std::cos(heading + beta);
vpColVector motion(3);
motion[0] = -radius * sinh + radius * sinhb;
motion[1] = radius * cosh - radius * coshb;
motion[2] = beta;
return motion;
}
else {
// The robot is moving in straight line
vpColVector motion(3);
motion[0] = distance * std::cos(heading);
motion[1] = distance * std::sin(heading);
motion[2] = 0.;
return motion;
}
}
/**
* \brief As the state model {x, y, \f$ \theta \f$} does not contain any velocity
* information, it does not evolve without commands.
* Thus, we create a functor that will save the current command to use it in the
* process function to project a particle in time.
*/
class vpProcessFunctor
{
public:
/**
* \brief Construct a new vp Process Functor object
*
* \param[in] w The length of the wheelbase.
*/
vpProcessFunctor(const double &w)
: m_w(w)
{ }
/**
* \brief Models the effect of the command on the state model.
*
* \param[in] x The state model. x[0] = x ; x[1] = y ; x[2] = heading
* \param[in] dt The period.
* \return vpColVector The state model after applying the command.
*/
vpColVector processFunction(const vpColVector &x, const double &dt)
{
vpColVector motion = computeMotionFromCommand(m_u, x, dt, m_w);
vpColVector newState = x + motion;
newState[2] = normalizeAngle(newState[2]);
return newState;
}
/**
* \brief Set the Commands object
*
* \param[in] u Set the commands of the current timestep.
*/
void setCommands(const vpColVector &u)
{
m_u = u;
}
private:
double m_w; /*!< The length of the wheelbase.*/
vpColVector m_u; /*!< The commands.*/
};
/**
* \brief Class that approximates a 4-wheel robot using a bicycle model.
*/
class vpBicycleModel
{
public:
/**
* \brief Construct a new vpBicycleModel object.
*
* \param[in] w The length of the wheelbase.
*/
vpBicycleModel(const double &w)
: m_w(w)
{ }
/**
* \brief Models the effect of the command on the state model.
*
* \param[in] u The commands. u[0] = velocity ; u[1] = steeringAngle .
* \param[in] x The state model. x[0] = x ; x[1] = y ; x[2] = heading
* \param[in] dt The period.
* \return vpColVector The state model after applying the command.
*/
vpColVector computeMotion(const vpColVector &u, const vpColVector &x, const double &dt)
{
return computeMotionFromCommand(u, x, dt, m_w);
}
/**
* \brief Move the robot according to its current position and
* the commands.
*
* \param[in] u The commands. u[0] = velocity ; u[1] = steeringAngle .
* \param[in] x The state model. x[0] = x ; x[1] = y ; x[2] = heading
* \param[in] dt The period.
* \return vpColVector The state model after applying the command.
*/
vpColVector move(const vpColVector &u, const vpColVector &x, const double &dt)
{
vpColVector motion = computeMotion(u, x, dt);
vpColVector newX = x + motion;
newX[2] = normalizeAngle(newX[2]);
return newX;
}
private:
double m_w; // The length of the wheelbase.
};
/**
* \brief Class that permits to convert the position + heading of the 4-wheel
* robot into measurements from a landmark.
*/
class vpLandmarkMeasurements
{
public:
/**
* \brief Construct a new vpLandmarkMeasurements object.
*
* \param[in] x The position along the X-axis of the landmark.
* \param[in] y The position along the Y-axis of the landmark.
* \param[in] range_std The standard deviation of the range measurements.
* \param[in] rel_angle_std The standard deviation of the relative angle measurements.
*/
vpLandmarkMeasurements(const double &x, const double &y, const double &range_std, const double &rel_angle_std)
: m_x(x)
, m_y(y)
, m_rngRange(range_std, 0., 4224)
, m_rngRelativeAngle(rel_angle_std, 0., 2112)
{ }
/**
* \brief Convert a particle of the Particle Filter into the measurement space.
*
* \param[in] particle The prior.
* \return vpColVector The prior expressed in the measurement space.
*/
vpColVector state_to_measurement(const vpColVector &particle)
{
vpColVector meas(2);
double dx = m_x - particle[0];
double dy = m_y - particle[1];
meas[0] = std::sqrt(dx * dx + dy * dy);
meas[1] = normalizeAngle(std::atan2(dy, dx));
return meas;
}
/**
* \brief Perfect measurement of the range and relative orientation of the robot
* located at pos.
*
* \param[in] pos The actual position of the robot (pos[0]: x, pos[1]: y, pos[2] = heading).
* \return vpColVector [0] the range [1] the relative orientation of the robot.
*/
vpColVector measureGT(const vpColVector &pos)
{
double dx = m_x - pos[0];
double dy = m_y - pos[1];
double range = std::sqrt(dx * dx + dy * dy);
double orientation = normalizeAngle(std::atan2(dy, dx));
vpColVector measurements(2);
measurements[0] = range;
measurements[1] = orientation;
return measurements;
}
/**
* \brief Noisy measurement of the range and relative orientation that
* correspond to pos.
*
* \param[in] pos The actual position of the robot (pos[0]: x ; pos[1] = y ; pos[2] = heading).
* \return vpColVector [0] the range [1] the relative orientation.
*/
vpColVector measureWithNoise(const vpColVector &pos)
{
vpColVector measurementsGT = measureGT(pos);
vpColVector measurementsNoisy = measurementsGT;
measurementsNoisy[0] += m_rngRange();
measurementsNoisy[1] += m_rngRelativeAngle();
measurementsNoisy[1] = normalizeAngle(measurementsNoisy[1]);
return measurementsNoisy;
}
/**
* \brief Compute the position that corresponds to a measurement.
*
* \param[in] meas The measurement vector.
* \param[out] x The X-coordinate that corresponds to the measurement.
* \param[out] y The Y-coordinate that corresponds to the measurement.
*/
void computePositionFromMeasurements(const vpColVector &meas, double &x, double &y)
{
double alpha = meas[1];
x = m_x - meas[0] * std::cos(alpha);
y = m_y - meas[0] * std::sin(alpha);
}
private:
double m_x; //!< The position along the X-axis of the landmark
double m_y; //!< The position along the Y-axis of the landmark
vpGaussRand m_rngRange; //!< Noise simulator for the range measurement
vpGaussRand m_rngRelativeAngle; //!< Noise simulator for the relative angle measurement
};
/**
* \brief Class that represent a grid of landmarks that measure the distance and
* relative orientation of the 4-wheel robot.
*/
class vpLandmarksGrid
{
public:
/**
* \brief Construct a new vpLandmarksGrid object.
*
* \param[in] landmarks The list of landmarks forming the grid.
* \param[in] distMaxAllowed Maximum distance allowed for the likelihood computation.
*/
vpLandmarksGrid(const std::vector<vpLandmarkMeasurements> &landmarks, const double &distMaxAllowed)
: m_landmarks(landmarks)
, m_nbLandmarks(static_cast<unsigned int>(landmarks.size()))
{
double sigmaDistance = distMaxAllowed / 3.;
double sigmaDistanceSquared = sigmaDistance * sigmaDistance;
m_constantDenominator = 1. / std::sqrt(2. * M_PI * sigmaDistanceSquared);
m_constantExpDenominator = -1. / (2. * sigmaDistanceSquared);
}
/**
* \brief Convert a particle of the Particle Filter into the measurement space.
*
* \param[in] particle The prior.
* \return vpColVector The prior expressed in the measurement space.
*/
vpColVector state_to_measurement(const vpColVector &particle)
{
vpColVector measurements(2*m_nbLandmarks);
for (unsigned int i = 0; i < m_nbLandmarks; ++i) {
vpColVector landmarkMeas = m_landmarks[i].state_to_measurement(particle);
measurements[2*i] = landmarkMeas[0];
measurements[(2*i) + 1] = landmarkMeas[1];
}
return measurements;
}
/**
* \brief Perfect measurement from each landmark of the range and relative orientation of the robot
* located at pos.
*
* \param[in] pos The actual position of the robot (pos[0]: x, pos[1]: y, pos[2] = heading).
* \return vpColVector n x ([0] the range [1] the relative orientation of the robot), where
* n is the number of landmarks.
*/
vpColVector measureGT(const vpColVector &pos)
{
vpColVector measurements(2*m_nbLandmarks);
for (unsigned int i = 0; i < m_nbLandmarks; ++i) {
vpColVector landmarkMeas = m_landmarks[i].measureGT(pos);
measurements[2*i] = landmarkMeas[0];
measurements[(2*i) + 1] = landmarkMeas[1];
}
return measurements;
}
/**
* \brief Noisy measurement from each landmark of the range and relative orientation that
* correspond to pos.
*
* \param[in] pos The actual position of the robot (pos[0]: x ; pos[1] = y ; pos[2] = heading).
* \return vpColVector n x ([0] the range [1] the relative orientation of the robot), where
* n is the number of landmarks.
*/
vpColVector measureWithNoise(const vpColVector &pos)
{
vpColVector measurements(2*m_nbLandmarks);
for (unsigned int i = 0; i < m_nbLandmarks; ++i) {
vpColVector landmarkMeas = m_landmarks[i].measureWithNoise(pos);
measurements[2*i] = landmarkMeas[0];
measurements[(2*i) + 1] = landmarkMeas[1];
}
return measurements;
}
/**
* \brief Compute the position that corresponds to a measurement.
* As the measurements can be noisy, we take the average position
* computed for each landmark individually.
*
* \param[in] meas The measurement vector.
* \param[out] x The X-coordinate that corresponds to the measurement.
* \param[out] y The Y-coordinate that corresponds to the measurement.
*/
void computePositionFromMeasurements(const vpColVector &meas, double &x, double &y)
{
x = 0.;
y = 0.;
for (unsigned int i = 0; i < m_nbLandmarks; ++i) {
vpColVector landmarkMeas({ meas[2*i], meas[(2*i) + 1] });
double xLand = 0., yLand = 0.;
m_landmarks[i].computePositionFromMeasurements(landmarkMeas, xLand, yLand);
x += xLand;
y += yLand;
}
x /= static_cast<double>(m_nbLandmarks);
y /= static_cast<double>(m_nbLandmarks);
}
/**
* \brief Compute the likelihood of a particle (value between 0. and 1.)
* knowing the measurements.
* The likelihood is computed using a Gaussian function that penalizes
* a particle whose position is "far" from the average position
* computed from the landmarks measurement.
*
* \param[in] particle The particle state.
* \param[in] meas The measurements.
* \return double The likelihood of a particle (value between 0. and 1.)
*/
double likelihood(const vpColVector &particle, const vpColVector &meas)
{
double meanX = 0., meanY = 0.;
computePositionFromMeasurements(meas, meanX, meanY);
double dx = meanX - particle[0];
double dy = meanY - particle[1];
double dist = std::sqrt(dx * dx + dy * dy);
double likelihood = std::exp(m_constantExpDenominator * dist) * m_constantDenominator;
likelihood = std::min(likelihood, 1.0); // Clamp to have likelihood <= 1.
likelihood = std::max(likelihood, 0.); // Clamp to have likelihood >= 0.
return likelihood;
}
private:
std::vector<vpLandmarkMeasurements> m_landmarks; /*!< The list of landmarks forming the grid.*/
const unsigned int m_nbLandmarks; /*!< Number of landmarks that the grid is made of.*/
double m_constantDenominator; // Denominator of the Gaussian function used in the likelihood computation.
double m_constantExpDenominator; // Denominator of the exponential in the Gaussian function used in the likelihood computation.
};
struct SoftwareArguments
{
// --- Main loop parameters---
static const int SOFTWARE_CONTINUE = 42;
bool m_useDisplay; //!< If true, activate the plot and the renderer if VISP_HAVE_DISPLAY is defined.
bool m_useUserInteraction; //!< If true, program will require some user inputs.
unsigned int m_nbStepsWarmUp; //!< Number of steps for the warmup phase.
// --- PF parameters---
unsigned int m_N; //!< The number of particles.
double m_maxDistanceForLikelihood; //!< The maximum allowed distance between a particle and the measurement, leading to a likelihood equal to 0..
double m_ampliMaxX; //!< Amplitude max of the noise for the state component corresponding to the X coordinate.
double m_ampliMaxY; //!< Amplitude max of the noise for the state component corresponding to the Y coordinate.
double m_ampliMaxTheta; //!< Amplitude max of the noise for the state component corresponding to the heading.
long m_seedPF; //!< Seed for the random generators of the PF.
int m_nbThreads; //!< Number of thread to use in the Particle Filter.
SoftwareArguments()
: m_useDisplay(true)
, m_useUserInteraction(true)
, m_nbStepsWarmUp(200)
, m_N(500)
, m_maxDistanceForLikelihood(0.5)
, m_ampliMaxX(0.25)
, m_ampliMaxY(0.25)
, m_ampliMaxTheta(0.1)
, m_seedPF(4224)
, m_nbThreads(1)
{ }
int parseArgs(const int argc, const char *argv[])
{
int i = 1;
while (i < argc) {
std::string arg(argv[i]);
if ((arg == "--nb-steps-warmup") && ((i+1) < argc)) {
m_nbStepsWarmUp = std::atoi(argv[i + 1]);
++i;
}
else if ((arg == "--max-distance-likelihood") && ((i+1) < argc)) {
m_maxDistanceForLikelihood = std::atof(argv[i + 1]);
++i;
}
else if (((arg == "-N") || (arg == "--nb-particles")) && ((i+1) < argc)) {
m_N = std::atoi(argv[i + 1]);
++i;
}
else if ((arg == "--seed") && ((i+1) < argc)) {
m_seedPF = std::atoi(argv[i + 1]);
++i;
}
else if ((arg == "--nb-threads") && ((i+1) < argc)) {
m_nbThreads = std::atoi(argv[i + 1]);
++i;
}
else if ((arg == "--ampli-max-X") && ((i+1) < argc)) {
m_ampliMaxX = std::atof(argv[i + 1]);
++i;
}
else if ((arg == "--ampli-max-Y") && ((i+1) < argc)) {
m_ampliMaxY = std::atof(argv[i + 1]);
++i;
}
else if ((arg == "--ampli-max-theta") && ((i+1) < argc)) {
m_ampliMaxTheta = std::atof(argv[i + 1]);
++i;
}
else if (arg == "-d") {
m_useDisplay = false;
}
else if (arg == "-c" ) {
m_useUserInteraction = false;
}
else if ((arg == "-h") || (arg == "--help")) {
printUsage(std::string(argv[0]));
SoftwareArguments defaultArgs;
defaultArgs.printDetails();
return 0;
}
else {
std::cout << "WARNING: unrecognised argument \"" << arg << "\"";
if (i + 1 < argc) {
std::cout << " with associated value(s) { ";
int nbValues = 0;
int j = i + 1;
bool hasToRun = true;
while ((j < argc) && hasToRun) {
std::string nextValue(argv[j]);
if (nextValue.find("--") == std::string::npos) {
std::cout << nextValue << " ";
++nbValues;
}
else {
hasToRun = false;
}
++j;
}
std::cout << "}" << std::endl;
i += nbValues;
}
}
++i;
}
return SOFTWARE_CONTINUE;
}
private:
void printUsage(const std::string &softName)
{
std::cout << "SYNOPSIS" << std::endl;
std::cout << " " << softName << " [--nb-steps-warmup <uint>]" << std::endl;
std::cout << " [--max-distance-likelihood <double>] [-N, --nb-particles <uint>] [--seed <int>] [--nb-threads <int>]" << std::endl;
std::cout << " [--ampli-max-X <double>] [--ampli-max-Y <double>] [--ampli-max-theta <double>]" << std::endl;
std::cout << " [-d, --no-display] [-h]" << std::endl;
std::cout << " [-c] [-h]" << std::endl;
}
void printDetails()
{
std::cout << std::endl << std::endl;
std::cout << "DETAILS" << std::endl;
std::cout << " --nb-steps-warmup" << std::endl;
std::cout << " Number of steps in the warmup loop." << std::endl;
std::cout << " Default: " << m_nbStepsWarmUp << std::endl;
std::cout << std::endl;
std::cout << " --max-distance-likelihood" << std::endl;
std::cout << " Maximum distance between a particle and the average position computed from the measurements." << std::endl;
std::cout << " Above this value, the likelihood of the particle is 0." << std::endl;
std::cout << " Default: " << m_maxDistanceForLikelihood << std::endl;
std::cout << std::endl;
std::cout << " -N, --nb-particles" << std::endl;
std::cout << " Number of particles of the Particle Filter." << std::endl;
std::cout << " Default: " << m_N << std::endl;
std::cout << std::endl;
std::cout << " --seed" << std::endl;
std::cout << " Seed to initialize the Particle Filter." << std::endl;
std::cout << " Use a negative value makes to use the current timestamp instead." << std::endl;
std::cout << " Default: " << m_seedPF << std::endl;
std::cout << std::endl;
std::cout << " --nb-threads" << std::endl;
std::cout << " Set the number of threads to use in the Particle Filter (only if OpenMP is available)." << std::endl;
std::cout << " Use a negative value to use the maximum number of threads instead." << std::endl;
std::cout << " Default: " << m_nbThreads << std::endl;
std::cout << std::endl;
std::cout << " --ampli-max-X" << std::endl;
std::cout << " Maximum amplitude of the noise added to a particle along the X-axis." << std::endl;
std::cout << " Default: " << m_ampliMaxX << std::endl;
std::cout << std::endl;
std::cout << " --ampli-max-Y" << std::endl;
std::cout << " Maximum amplitude of the noise added to a particle along the Y-axis." << std::endl;
std::cout << " Default: " << m_ampliMaxY << std::endl;
std::cout << std::endl;
std::cout << " --ampli-max-theta" << std::endl;
std::cout << " Maximum amplitude of the noise added to a particle affecting the heading of the robot." << std::endl;
std::cout << " Default: " << m_ampliMaxTheta << std::endl;
std::cout << std::endl;
std::cout << " -d, --no-display" << std::endl;
std::cout << " Deactivate display." << std::endl;
std::cout << " Default: display is ";
#ifdef VISP_HAVE_DISPLAY
std::cout << "ON" << std::endl;
#else
std::cout << "OFF" << std::endl;
#endif
std::cout << std::endl;
std::cout << " -c" << std::endl;
std::cout << " Deactivate user interaction." << std::endl;
std::cout << " Default: user interaction enabled: " << m_useUserInteraction << std::endl;
std::cout << std::endl;
std::cout << " -h, --help" << std::endl;
std::cout << " Display this help." << std::endl;
std::cout << std::endl;
}
};
int main(const int argc, const char *argv[])
{
SoftwareArguments args;
int returnCode = args.parseArgs(argc, argv);
if (returnCode != SoftwareArguments::SOFTWARE_CONTINUE) {
return returnCode;
}
const double dt = 0.1; // Period of 0.1s
const double step = 1.; // Number of update of the robot position between two PF filtering
const double sigmaRange = 0.3; // Standard deviation of the range measurement: 0.3m
const double sigmaBearing = vpMath::rad(0.5); // Standard deviation of the bearing angle: 0.5deg
const double wheelbase = 0.5; // Wheelbase of 0.5m
const std::vector<vpLandmarkMeasurements> landmarks = { vpLandmarkMeasurements(5, 10, sigmaRange, sigmaBearing)
, vpLandmarkMeasurements(10, 5, sigmaRange, sigmaBearing)
, vpLandmarkMeasurements(15, 15, sigmaRange, sigmaBearing)
, vpLandmarkMeasurements(20, 5, sigmaRange, sigmaBearing)
, vpLandmarkMeasurements(0, 30, sigmaRange, sigmaBearing)
, vpLandmarkMeasurements(50, 30, sigmaRange, sigmaBearing)
, vpLandmarkMeasurements(40, 10, sigmaRange, sigmaBearing) }; // Vector of landmarks constituting the grid
std::vector<vpColVector> cmds = generateCommands();
const unsigned int nbCmds = static_cast<unsigned int>(cmds.size());
// Initialize the attributes of the PF
std::vector<double> stdevsPF = { args.m_ampliMaxX / 3., args.m_ampliMaxY / 3., args.m_ampliMaxTheta / 3. }; ///TODO: define
int seedPF = args.m_seedPF;
unsigned int nbParticles = args.m_N;
int nbThreads = args.m_nbThreads;
vpColVector X0(3);
X0[0] = 2.; // x = 2m
X0[1] = 6.; // y = 6m
X0[2] = 0.3; // robot orientation = 0.3 rad
vpProcessFunctor processFtor(wheelbase);
vpLandmarksGrid grid(landmarks, args.m_maxDistanceForLikelihood);
vpBicycleModel robot(wheelbase);
using std::placeholders::_1;
using std::placeholders::_2;
vpParticleFilter<vpColVector>::vpProcessFunction f = std::bind(&vpProcessFunctor::processFunction, &processFtor, _1, _2);
vpParticleFilter<vpColVector>::vpLikelihoodFunction likelihoodFunc = std::bind(&vpLandmarksGrid::likelihood, &grid, _1, _2);
vpParticleFilter<vpColVector>::vpResamplingConditionFunction checkResamplingFunc = vpParticleFilter<vpColVector>::simpleResamplingCheck;
vpParticleFilter<vpColVector>::vpResamplingFunction resamplingFunc = vpParticleFilter<vpColVector>::simpleImportanceResampling;
vpParticleFilter<vpColVector>::vpFilterFunction weightedMeanFunc = stateMean;
vpParticleFilter<vpColVector>::vpStateAddFunction addFunc = stateAdd;
// Initialize the PF
vpParticleFilter<vpColVector> filter(nbParticles, stdevsPF, seedPF, nbThreads);
filter.init(X0, f, likelihoodFunc, checkResamplingFunc, resamplingFunc, weightedMeanFunc, addFunc);
#ifdef VISP_HAVE_DISPLAY
vpPlot *plot = nullptr;
if (args.m_useDisplay) {
// Initialize the plot
plot = new vpPlot(1);
plot->initGraph(0, 3);
plot->setTitle(0, "Position of the robot");
plot->setUnitX(0, "Position along x(m)");
plot->setUnitY(0, "Position along y (m)");
plot->setLegend(0, 0, "GT");
plot->setLegend(0, 1, "Filtered");
plot->setLegend(0, 2, "Measure");
plot->setColor(0, 0, vpColor::red);
plot->setColor(0, 1, vpColor::blue);
plot->setColor(0, 2, vpColor::black);
}
#endif
// Initialize the simulation
vpColVector robot_pos = X0;
vpColVector noMotionCommand(2, 0.);
// Warm-up step
double averageFilteringTime = 0.;
for (unsigned int i = 0; i < args.m_nbStepsWarmUp; ++i) {
// Perform the measurement
vpColVector z = grid.measureWithNoise(robot_pos);
double t0 = vpTime::measureTimeMicros();
//! [Perform_filtering]
// Update the functor command
processFtor.setCommands(noMotionCommand);
// Use the PF to filter the measurement
filter.filter(z, dt);
//! [Perform_filtering]
averageFilteringTime += vpTime::measureTimeMicros() - t0;
}
double meanErrorFilter = 0., meanErrorNoise = 0.;
for (unsigned int i = 0; i < nbCmds; ++i) {
robot_pos = robot.move(cmds[i], robot_pos, dt / step);
if (i % static_cast<int>(step) == 0) {
// Perform the measurement
vpColVector z = grid.measureWithNoise(robot_pos);
double t0 = vpTime::measureTimeMicros();
//! [Perform_filtering]
// Update the functor command
processFtor.setCommands(cmds[i]);
// Use the PF to filter the measurement
filter.filter(z, dt);
//! [Perform_filtering]
averageFilteringTime += vpTime::measureTimeMicros() - t0;
//! [Get_filtered_state]
vpColVector Xest = filter.computeFilteredState();
//! [Get_filtered_state]
//! [Errors_computation]
// Compute the error between the filtered state and the Ground Truth
// to have statistics at the end of the program
double dxFilter = Xest[0] - robot_pos[0];
double dyFilter = Xest[1] - robot_pos[1];
double errorFilter = std::sqrt(dxFilter * dxFilter + dyFilter * dyFilter);
meanErrorFilter += errorFilter;
// Compute the error between the noisy measurements and the Ground Truth
// to have statistics at the end of the program
double xMeas = 0., yMeas = 0.;
grid.computePositionFromMeasurements(z, xMeas, yMeas);
double dxMeas = xMeas - robot_pos[0];
double dyMeas = yMeas - robot_pos[1];
meanErrorNoise += std::sqrt(dxMeas * dxMeas + dyMeas * dyMeas);
#ifdef VISP_HAVE_DISPLAY
if (args.m_useDisplay) {
// Plot the filtered state
plot->plot(0, 1, Xest[0], Xest[1]);
plot->plot(0, 2, xMeas, yMeas);
}
#endif
}
#ifdef VISP_HAVE_DISPLAY
if (args.m_useDisplay) {
// Plot the ground truth
plot->plot(0, 0, robot_pos[0], robot_pos[1]);
}
#endif
}
// Display the statistics that were computed
averageFilteringTime = averageFilteringTime / (static_cast<double>(nbCmds + args.m_nbStepsWarmUp));
meanErrorFilter = meanErrorFilter / (static_cast<double>(nbCmds));
meanErrorNoise = meanErrorNoise / (static_cast<double>(nbCmds));
std::cout << "Mean error filter = " << meanErrorFilter << std::endl;
std::cout << "Mean error noise = " << meanErrorNoise << std::endl;
std::cout << "Mean filtering time = " << averageFilteringTime << "us" << std::endl;
if (args.m_useUserInteraction) {
std::cout << "Press Enter to quit..." << std::endl;
std::cin.get();
}
#ifdef VISP_HAVE_DISPLAY
if (args.m_useDisplay) {
delete plot;
}
#endif
// Check if the results are the one expected, when this program is used for the unit tests
const double maxError = 0.15;
if (meanErrorFilter > meanErrorNoise) {
std::cerr << "Error: noisy measurements error = " << meanErrorNoise << ", filter error = " << meanErrorFilter << std::endl;
return -1;
}
else if (meanErrorFilter > maxError) {
std::cerr << "Error: max tolerated error = " << maxError << ", average error = " << meanErrorFilter << std::endl;
return -1;
}
return 0;
}
#else
int main()
{
std::cout << "This example is only available if you compile ViSP in C++11 standard or higher." << std::endl;
return 0;
}
#endif
|