1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* tests the control law
* eye-in-hand control
* velocity computed in the camera frame
*/
/*!
\file servoAfma6Line2DCamVelocity.cpp
\example servoAfma6Line2DCamVelocity.cpp
\brief Example of eye-in-hand control law. We control here a real robot, the
Afma6 robot (cartesian robot, with 6 degrees of freedom). The velocity is
computed in the camera frame. The visual feature is a line.
*/
#include <iostream>
#include <visp3/core/vpConfig.h>
#if defined(VISP_HAVE_REALSENSE2) && defined(VISP_HAVE_DISPLAY) && defined(VISP_HAVE_AFMA6)
#include <visp3/core/vpImage.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpLine.h>
#include <visp3/core/vpMath.h>
#include <visp3/gui/vpDisplayFactory.h>
#include <visp3/robot/vpRobotAfma6.h>
#include <visp3/sensor/vpRealSense2.h>
#include <visp3/me/vpMeLine.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureLine.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
int main()
{
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
vpRobotAfma6 robot;
vpCameraParameters::vpCameraParametersProjType projModel = vpCameraParameters::perspectiveProjWithDistortion;
// Load the end-effector to camera frame transformation obtained
// using a camera intrinsic model with distortion
robot.init(vpAfma6::TOOL_INTEL_D435_CAMERA, projModel);
try {
std::cout << "WARNING: This example will move the robot! "
<< "Please make sure to have the user stop button at hand!" << std::endl
<< "Press Enter to continue..." << std::endl;
std::cin.ignore();
vpRealSense2 rs;
rs2::config config;
unsigned int width = 640, height = 480, fps = 60;
config.enable_stream(RS2_STREAM_COLOR, width, height, RS2_FORMAT_RGBA8, fps);
config.enable_stream(RS2_STREAM_DEPTH, width, height, RS2_FORMAT_Z16, fps);
config.enable_stream(RS2_STREAM_INFRARED, width, height, RS2_FORMAT_Y8, fps);
rs.open(config);
// Warm up camera
vpImage<unsigned char> I;
for (size_t i = 0; i < 10; ++i) {
rs.acquire(I);
}
// Get camera intrinsics
vpCameraParameters cam;
robot.getCameraParameters(cam, I);
std::cout << "cam:\n" << cam << std::endl;
std::shared_ptr<vpDisplay> d = vpDisplayFactory::createDisplay(I, 10, 10, "Current image");
vpDisplay::display(I);
vpDisplay::flush(I);
vpMe me;
me.setRange(10);
me.setPointsToTrack(100);
me.setLikelihoodThresholdType(vpMe::NORMALIZED_THRESHOLD);
me.setThreshold(10);
me.setSampleStep(10);
vpMeLine line;
line.setDisplay(vpMeSite::RANGE_RESULT);
line.setMe(&me);
// Initialize the tracking. Define the line to track.
line.initTracking(I);
line.track(I);
vpDisplay::flush(I);
// Sets the current position of the visual feature
vpFeatureLine s_line;
vpFeatureBuilder::create(s_line, cam, line);
// Sets the desired position of the visual feature
vpLine line_d;
line_d.setWorldCoordinates(1, 0, 0, 0, 0, 0, 1, 0);
vpHomogeneousMatrix c_M_o(0, 0, 0.3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
line_d.project(c_M_o);
vpFeatureLine s_line_d;
vpFeatureBuilder::create(s_line_d, line_d);
// Define the task
vpServo task;
// - We want an eye-in-hand control law
// - Robot is controlled in the camera frame
task.setServo(vpServo::EYEINHAND_CAMERA);
// - We want to see a line on a line
task.addFeature(s_line, s_line_d);
// - Set the gain
task.setLambda(0.5);
// - Display task information
task.print();
robot.setRobotState(vpRobot::STATE_VELOCITY_CONTROL);
bool final_quit = false;
bool send_velocities = false;
while (!final_quit) {
double t_start = vpTime::measureTimeMs();
rs.acquire(I);
vpDisplay::display(I);
// Track the line
line.track(I);
line.display(I, vpColor::red);
// Update the current line feature
vpFeatureBuilder::create(s_line, cam, line);
// Display the current and the desired features
s_line.display(cam, I, vpColor::red);
s_line_d.display(cam, I, vpColor::green);
vpColVector v = task.computeControlLaw();
if (!send_velocities) {
v = 0;
}
// Send camera frame velocities to the robot
robot.setVelocity(vpRobot::CAMERA_FRAME, v);
{
std::stringstream ss;
ss << "Left click to " << (send_velocities ? "stop the robot" : "servo the robot") << ", right click to quit.";
vpDisplay::displayText(I, 20, 20, ss.str(), vpColor::red);
ss.clear();
ss.str("");
ss << "Loop time: " << vpTime::measureTimeMs() - t_start << " ms";
vpDisplay::displayText(I, 40, 20, ss.str(), vpColor::red);
}
vpDisplay::flush(I);
vpMouseButton::vpMouseButtonType button;
if (vpDisplay::getClick(I, button, false)) {
switch (button) {
case vpMouseButton::button1:
send_velocities = !send_velocities;
break;
case vpMouseButton::button3:
final_quit = true;
break;
default:
break;
}
}
}
std::cout << "Stop the robot " << std::endl;
robot.setRobotState(vpRobot::STATE_STOP);
if (!final_quit) {
while (!final_quit) {
rs.acquire(I);
vpDisplay::display(I);
vpDisplay::displayText(I, 20, 20, "Click to quit the program.", vpColor::red);
if (vpDisplay::getClick(I, false)) {
final_quit = true;
}
vpDisplay::flush(I);
}
}
// Display task information
task.print();
return EXIT_SUCCESS;
}
catch (const vpException &e) {
std::cout << "Test failed with exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have an afma6 robot connected to your computer..." << std::endl;
return EXIT_SUCCESS;
}
#endif
|