File: servoAfma6Point2DCamVelocity.cpp

package info (click to toggle)
visp 3.7.0-7
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 166,380 kB
  • sloc: cpp: 392,705; ansic: 224,448; xml: 23,444; python: 13,701; java: 4,792; sh: 206; objc: 145; makefile: 118
file content (255 lines) | stat: -rw-r--r-- 8,637 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/*
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2024 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Description:
 *   tests the control law
 *   eye-in-hand control
 *   velocity computed in the camera frame
 */

/*!
  \file servoAfma6Point2DCamVelocity.cpp
  \example servoAfma6Point2DCamVelocity.cpp

  \brief Example of eye-in-hand control law. We control here a real robot, the
  Afma6 robot (cartesian robot, with 6 degrees of freedom). The velocity is
  computed in camera frame. The visual feature is the center of gravity of a
  point.
*/

#include <iostream>
#include <visp3/core/vpConfig.h>

#if defined(VISP_HAVE_AFMA6) && defined(VISP_HAVE_REALSENSE2) && defined(VISP_HAVE_DISPLAY)

#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/gui/vpDisplayFactory.h>
#include <visp3/sensor/vpRealSense2.h>
#include <visp3/blob/vpDot2.h>
#include <visp3/robot/vpRobotAfma6.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>


int main()
{
#ifdef ENABLE_VISP_NAMESPACE
  using namespace VISP_NAMESPACE_NAME;
#endif

  // Log file creation in /tmp/$USERNAME/log.dat
  // This file contains by line:
  // - the 6 computed joint velocities (m/s, rad/s) to achieve the task
  // - the 6 measured joint velocities (m/s, rad/s)
  // - the 6 measured joint positions (m, rad)
  // - the 2 values of s - s*

  // Get the user login name
  std::string username = vpIoTools::getUserName();

  // Create a log filename to save velocities...
  std::string logdirname = "/tmp/" + username;

  // Test if the output path exist. If no try to create it
  if (vpIoTools::checkDirectory(logdirname) == false) {
    try {
      // Create the dirname
      vpIoTools::makeDirectory(logdirname);
    }
    catch (...) {
      std::cerr << std::endl << "ERROR:" << std::endl;
      std::cerr << "  Cannot create " << logdirname << std::endl;
      return EXIT_FAILURE;
    }
  }
  std::string logfilename = logdirname + "/log.dat";

  // Open the log file name
  std::ofstream flog(logfilename.c_str());

  try {
    vpRealSense2 rs;
    rs2::config config;
    unsigned int width = 640, height = 480, fps = 60;
    config.enable_stream(RS2_STREAM_COLOR, width, height, RS2_FORMAT_RGBA8, fps);
    config.enable_stream(RS2_STREAM_DEPTH, width, height, RS2_FORMAT_Z16, fps);
    config.enable_stream(RS2_STREAM_INFRARED, width, height, RS2_FORMAT_Y8, fps);
    rs.open(config);

    vpImage<unsigned char> I;

    // Warm up camera
    for (size_t i = 0; i < 10; ++i) {
      rs.acquire(I);
    }

    std::shared_ptr<vpDisplay> d = vpDisplayFactory::createDisplay(I, 100, 100, "Current image");

    vpDisplay::display(I);
    vpDisplay::flush(I);

    std::cout << "-------------------------------------------------------" << std::endl;
    std::cout << " Test program for vpServo " << std::endl;
    std::cout << " Eye-in-hand task control, velocity computed in the joint space" << std::endl;
    std::cout << " Use of the Afma6 robot " << std::endl;
    std::cout << " task : servo a point " << std::endl;
    std::cout << "-------------------------------------------------------" << std::endl;

    vpDot dot;
    dot.setGraphics(true);

    std::cout << "Click on a dot..." << std::endl;
    dot.initTracking(I);

    // Get the dot cog
    vpImagePoint cog = dot.getCog();
    vpDisplay::displayCross(I, cog, 10, vpColor::blue);
    vpDisplay::flush(I);

    vpRobotAfma6 robot;
    robot.init(vpAfma6::TOOL_INTEL_D435_CAMERA, vpCameraParameters::perspectiveProjWithoutDistortion);

    // Get camera intrinsics
    vpCameraParameters cam;
    robot.getCameraParameters(cam, I);

    // Sets the current position of the visual feature
    vpFeaturePoint s;
    // Update visual feature from camera parameters and blob center of gravity
    vpFeatureBuilder::create(s, cam, dot);

    // Sets the desired position of the visual feature
    vpFeaturePoint s_d;
    s_d.buildFrom(0, 0, 1); // Here we consider the center of the image (x=y=0 and Z=1 meter)

    // Define the task
    // - we want an eye-in-hand control law
    // - robot is controlled in the camera frame
    vpServo task;
    task.setServo(vpServo::EYEINHAND_CAMERA);

    // - we want to see a point on a point
    task.addFeature(s, s_d);

    // - set the constant gain
    task.setLambda(0.4);

    // Display task information
    task.print();

    // Now the robot will be controlled in velocity
    robot.setRobotState(vpRobot::STATE_VELOCITY_CONTROL);

    std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;

    bool quit = false;
    while (!quit) {
      // Acquire a new image from the camera
      rs.acquire(I);

      // Display this image
      vpDisplay::display(I);

      // Achieve the tracking of the dot in the image
      dot.track(I);

      // Update the point feature from the dot location
      vpFeatureBuilder::create(s, cam, dot);

      // Compute the visual servoing skew vector
      vpColVector v_c = task.computeControlLaw();

      // Display the current and desired feature points in the image display
      vpServoDisplay::display(task, cam, I);

      // Apply the computed cartesian camera velocities to the robot
      robot.setVelocity(vpRobot::CAMERA_FRAME, v_c);

      // Save velocities applied to the robot in the log file
      // v[0], v[1], v[2] correspond to camera translation velocities in m/s
      // v[3], v[4], v[5] correspond to camera rotation velocities in rad/s
      flog << v_c[0] << " " << v_c[1] << " " << v_c[2] << " " << v_c[3] << " " << v_c[4] << " " << v_c[5] << " ";

      // Get the measured joint velocities of the robot
      vpColVector qdot_mes;
      robot.getVelocity(vpRobot::JOINT_STATE, qdot_mes);
      // Save measured joint velocities of the robot in the log file:
      // - qdot_mes[0], qdot_mes[1], qdot_mes[2] correspond to measured joint translation velocities in m/s
      // - qdot_mes[3], qdot_mes[4], qdot_mes[5] correspond to measured joint rotation velocities in rad/s
      flog << qdot_mes[0] << " " << qdot_mes[1] << " " << qdot_mes[2] << " " << qdot_mes[3] << " " << qdot_mes[4] << " " << qdot_mes[5] << " ";

      // Get the measured joint positions of the robot
      vpColVector q;
      robot.getPosition(vpRobot::JOINT_STATE, q);
      // Save measured joint positions of the robot in the log file
      // - q[0], q[1], q[2] correspond to measured joint translation
      //   positions in m
      // - q[3], q[4], q[5] correspond to measured joint rotation
      //   positions in rad
      flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";

      // Save feature error (s-s*) for the feature point. For this feature
      // point, we have 2 errors (along x and y axis).  This error is
      // expressed in meters in the camera frame
      flog << (task.getError()).t() << std::endl;

      vpDisplay::displayText(I, 20, 20, "Click to quit...", vpColor::red);
      if (vpDisplay::getClick(I, false)) {
        quit = true;
      }

      // Flush the display
      vpDisplay::flush(I);
    }

    // Close the log file
    flog.close();

    // Display task information
    task.print();
    return EXIT_SUCCESS;
  }
  catch (const vpException &e) {
    // Close the log file
    flog.close();
    std::cout << "Visual servo failed with exception: " << e << std::endl;
    return EXIT_FAILURE;
  }
}

#else
int main()
{
  std::cout << "You do not have an afma6 robot connected to your computer..." << std::endl;
  return EXIT_SUCCESS;
}
#endif