1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* tests the control law
* eye-in-hand control
* velocity computed in the camera frame
*/
/*!
\file servoAfma6Point2DCamVelocity.cpp
\example servoAfma6Point2DCamVelocity.cpp
\brief Example of eye-in-hand control law. We control here a real robot, the
Afma6 robot (cartesian robot, with 6 degrees of freedom). The velocity is
computed in camera frame. The visual feature is the center of gravity of a
point.
*/
#include <iostream>
#include <visp3/core/vpConfig.h>
#if defined(VISP_HAVE_AFMA6) && defined(VISP_HAVE_REALSENSE2) && defined(VISP_HAVE_DISPLAY)
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/gui/vpDisplayFactory.h>
#include <visp3/sensor/vpRealSense2.h>
#include <visp3/blob/vpDot2.h>
#include <visp3/robot/vpRobotAfma6.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
int main()
{
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
// Log file creation in /tmp/$USERNAME/log.dat
// This file contains by line:
// - the 6 computed joint velocities (m/s, rad/s) to achieve the task
// - the 6 measured joint velocities (m/s, rad/s)
// - the 6 measured joint positions (m, rad)
// - the 2 values of s - s*
// Get the user login name
std::string username = vpIoTools::getUserName();
// Create a log filename to save velocities...
std::string logdirname = "/tmp/" + username;
// Test if the output path exist. If no try to create it
if (vpIoTools::checkDirectory(logdirname) == false) {
try {
// Create the dirname
vpIoTools::makeDirectory(logdirname);
}
catch (...) {
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Cannot create " << logdirname << std::endl;
return EXIT_FAILURE;
}
}
std::string logfilename = logdirname + "/log.dat";
// Open the log file name
std::ofstream flog(logfilename.c_str());
try {
vpRealSense2 rs;
rs2::config config;
unsigned int width = 640, height = 480, fps = 60;
config.enable_stream(RS2_STREAM_COLOR, width, height, RS2_FORMAT_RGBA8, fps);
config.enable_stream(RS2_STREAM_DEPTH, width, height, RS2_FORMAT_Z16, fps);
config.enable_stream(RS2_STREAM_INFRARED, width, height, RS2_FORMAT_Y8, fps);
rs.open(config);
vpImage<unsigned char> I;
// Warm up camera
for (size_t i = 0; i < 10; ++i) {
rs.acquire(I);
}
std::shared_ptr<vpDisplay> d = vpDisplayFactory::createDisplay(I, 100, 100, "Current image");
vpDisplay::display(I);
vpDisplay::flush(I);
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << " Test program for vpServo " << std::endl;
std::cout << " Eye-in-hand task control, velocity computed in the joint space" << std::endl;
std::cout << " Use of the Afma6 robot " << std::endl;
std::cout << " task : servo a point " << std::endl;
std::cout << "-------------------------------------------------------" << std::endl;
vpDot dot;
dot.setGraphics(true);
std::cout << "Click on a dot..." << std::endl;
dot.initTracking(I);
// Get the dot cog
vpImagePoint cog = dot.getCog();
vpDisplay::displayCross(I, cog, 10, vpColor::blue);
vpDisplay::flush(I);
vpRobotAfma6 robot;
robot.init(vpAfma6::TOOL_INTEL_D435_CAMERA, vpCameraParameters::perspectiveProjWithoutDistortion);
// Get camera intrinsics
vpCameraParameters cam;
robot.getCameraParameters(cam, I);
// Sets the current position of the visual feature
vpFeaturePoint s;
// Update visual feature from camera parameters and blob center of gravity
vpFeatureBuilder::create(s, cam, dot);
// Sets the desired position of the visual feature
vpFeaturePoint s_d;
s_d.buildFrom(0, 0, 1); // Here we consider the center of the image (x=y=0 and Z=1 meter)
// Define the task
// - we want an eye-in-hand control law
// - robot is controlled in the camera frame
vpServo task;
task.setServo(vpServo::EYEINHAND_CAMERA);
// - we want to see a point on a point
task.addFeature(s, s_d);
// - set the constant gain
task.setLambda(0.4);
// Display task information
task.print();
// Now the robot will be controlled in velocity
robot.setRobotState(vpRobot::STATE_VELOCITY_CONTROL);
std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
bool quit = false;
while (!quit) {
// Acquire a new image from the camera
rs.acquire(I);
// Display this image
vpDisplay::display(I);
// Achieve the tracking of the dot in the image
dot.track(I);
// Update the point feature from the dot location
vpFeatureBuilder::create(s, cam, dot);
// Compute the visual servoing skew vector
vpColVector v_c = task.computeControlLaw();
// Display the current and desired feature points in the image display
vpServoDisplay::display(task, cam, I);
// Apply the computed cartesian camera velocities to the robot
robot.setVelocity(vpRobot::CAMERA_FRAME, v_c);
// Save velocities applied to the robot in the log file
// v[0], v[1], v[2] correspond to camera translation velocities in m/s
// v[3], v[4], v[5] correspond to camera rotation velocities in rad/s
flog << v_c[0] << " " << v_c[1] << " " << v_c[2] << " " << v_c[3] << " " << v_c[4] << " " << v_c[5] << " ";
// Get the measured joint velocities of the robot
vpColVector qdot_mes;
robot.getVelocity(vpRobot::JOINT_STATE, qdot_mes);
// Save measured joint velocities of the robot in the log file:
// - qdot_mes[0], qdot_mes[1], qdot_mes[2] correspond to measured joint translation velocities in m/s
// - qdot_mes[3], qdot_mes[4], qdot_mes[5] correspond to measured joint rotation velocities in rad/s
flog << qdot_mes[0] << " " << qdot_mes[1] << " " << qdot_mes[2] << " " << qdot_mes[3] << " " << qdot_mes[4] << " " << qdot_mes[5] << " ";
// Get the measured joint positions of the robot
vpColVector q;
robot.getPosition(vpRobot::JOINT_STATE, q);
// Save measured joint positions of the robot in the log file
// - q[0], q[1], q[2] correspond to measured joint translation
// positions in m
// - q[3], q[4], q[5] correspond to measured joint rotation
// positions in rad
flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";
// Save feature error (s-s*) for the feature point. For this feature
// point, we have 2 errors (along x and y axis). This error is
// expressed in meters in the camera frame
flog << (task.getError()).t() << std::endl;
vpDisplay::displayText(I, 20, 20, "Click to quit...", vpColor::red);
if (vpDisplay::getClick(I, false)) {
quit = true;
}
// Flush the display
vpDisplay::flush(I);
}
// Close the log file
flog.close();
// Display task information
task.print();
return EXIT_SUCCESS;
}
catch (const vpException &e) {
// Close the log file
flog.close();
std::cout << "Visual servo failed with exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have an afma6 robot connected to your computer..." << std::endl;
return EXIT_SUCCESS;
}
#endif
|