File: servoAfma6TwoLines2DCamVelocity.cpp

package info (click to toggle)
visp 3.7.0-7
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 166,380 kB
  • sloc: cpp: 392,705; ansic: 224,448; xml: 23,444; python: 13,701; java: 4,792; sh: 206; objc: 145; makefile: 118
file content (220 lines) | stat: -rw-r--r-- 6,775 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/*
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2024 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Description:
 *   tests the control law
 *   eye-in-hand control
 *   velocity computed in the camera frame
 */

/*!
  \file servoAfma6TwoLines2DCamVelocity.cpp
  \example servoAfma6TwoLines2DCamVelocity.cpp

  \brief Example of eye-in-hand control law. We control here a real robot, the
  Afma6 robot (cartesian robot, with 6 degrees of freedom). The velocity is
  computed in the camera frame. Visual features are the two lines.
*/

#include <iostream>
#include <visp3/core/vpConfig.h>

#if defined(VISP_HAVE_REALSENSE2) && defined(VISP_HAVE_DISPLAY) && defined(VISP_HAVE_AFMA6)

#include <visp3/core/vpImage.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpLine.h>
#include <visp3/core/vpMath.h>
#include <visp3/gui/vpDisplayFactory.h>
#include <visp3/robot/vpRobotAfma6.h>
#include <visp3/sensor/vpRealSense2.h>
#include <visp3/me/vpMeLine.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureLine.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>

int main()
{
#ifdef ENABLE_VISP_NAMESPACE
  using namespace VISP_NAMESPACE_NAME;
#endif

  try {
    vpRealSense2 rs;
    rs2::config config;
    unsigned int width = 640, height = 480, fps = 60;
    config.enable_stream(RS2_STREAM_COLOR, width, height, RS2_FORMAT_RGBA8, fps);
    config.enable_stream(RS2_STREAM_DEPTH, width, height, RS2_FORMAT_Z16, fps);
    config.enable_stream(RS2_STREAM_INFRARED, width, height, RS2_FORMAT_Y8, fps);
    rs.open(config);

    vpImage<unsigned char> I;

    // Warm up camera
    for (size_t i = 0; i < 10; ++i) {
      rs.acquire(I);
    }

    std::shared_ptr<vpDisplay> d = vpDisplayFactory::createDisplay(I, 10, 10, "Current image");

    vpDisplay::display(I);
    vpDisplay::flush(I);

    std::cout << "-------------------------------------------------------" << std::endl;
    std::cout << " Test program for vpServo " << std::endl;
    std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl;
    std::cout << " Simulation " << std::endl;
    std::cout << " task : servo a point " << std::endl;
    std::cout << "-------------------------------------------------------" << std::endl;

    int nb_lines = 2;

    std::vector<vpMeLine> line(nb_lines);

    vpMe me;
    me.setRange(10);
    me.setPointsToTrack(100);
    me.setLikelihoodThresholdType(vpMe::NORMALIZED_THRESHOLD);
    me.setThreshold(15);
    me.setSampleStep(10);

    // Initialize the tracking. Define the two lines to track
    // The two lines to track must be parallels
    for (int i = 0; i < nb_lines; ++i) {
      line[i].setDisplay(vpMeSite::RANGE_RESULT);
      line[i].setMe(&me);

      line[i].initTracking(I);
      line[i].track(I);
      vpDisplay::flush(I);
    }

    vpRobotAfma6 robot;
    robot.init(vpAfma6::TOOL_INTEL_D435_CAMERA, vpCameraParameters::perspectiveProjWithoutDistortion);

    // Get camera intrinsics
    vpCameraParameters cam;
    robot.getCameraParameters(cam, I);

    // Sets the current position of the visual feature
    std::vector<vpFeatureLine> s_line(nb_lines);
    for (int i = 0; i < nb_lines; ++i) {
      vpFeatureBuilder::create(s_line[i], cam, line[i]);
    }

    // Sets the desired position of the visual feature
    std::vector<vpLine> line_d(2);
    line_d[0].setWorldCoordinates(1, 0, 0, -0.05, 0, 0, 1, 0);
    line_d[1].setWorldCoordinates(1, 0, 0, 0.05, 0, 0, 1, 0);

    vpHomogeneousMatrix c_M_o(0, 0, 0.5, 0, 0, vpMath::rad(0));

    line_d[0].project(c_M_o);
    line_d[1].project(c_M_o);

    // Those lines are needed to keep the conventions define in vpMeLine
    // (Those in vpLine are less restrictive)  Another way to have the
    // coordinates of the desired features is to learn them before executing
    // the program.
    line_d[0].setRho(-fabs(line_d[0].getRho()));
    line_d[0].setTheta(0);
    line_d[1].setRho(-fabs(line_d[1].getRho()));
    line_d[1].setTheta(M_PI);

    std::vector<vpFeatureLine> s_line_d(nb_lines);
    vpFeatureBuilder::create(s_line_d[0], line_d[0]);
    vpFeatureBuilder::create(s_line_d[1], line_d[1]);

    // Define the task
    // - we want an eye-in-hand control law
    // - robot is controlled in the camera frame
    vpServo task;
    task.setServo(vpServo::EYEINHAND_CAMERA);

    // - we want to see a line on a line
    for (int i = 0; i < nb_lines; ++i) {
      task.addFeature(s_line[i], s_line_d[i]);
    }

    // - set the gain
    task.setLambda(0.2);

    // -Display task information
    task.print();

    robot.setRobotState(vpRobot::STATE_VELOCITY_CONTROL);

    bool quit = false;
    while (!quit) {
      rs.acquire(I);
      vpDisplay::display(I);

      // Track the lines and update the features
      for (int i = 0; i < nb_lines; ++i) {
        line[i].track(I);
        line[i].display(I, vpColor::red);

        vpFeatureBuilder::create(s_line[i], cam, line[i]);

        s_line[i].display(cam, I, vpColor::red);
        s_line_d[i].display(cam, I, vpColor::green);
      }

      vpColVector v_c = task.computeControlLaw();

      robot.setVelocity(vpRobot::CAMERA_FRAME, v_c);

      vpDisplay::displayText(I, 20, 20, "Click to quit...", vpColor::red);
      if (vpDisplay::getClick(I, false)) {
        quit = true;
      }

      vpDisplay::flush(I);
    }

    // Display task information
    task.print();

    return EXIT_SUCCESS;
  }
  catch (const vpException &e) {
    std::cout << "Visual servo failed with exception: " << e << std::endl;
    return EXIT_FAILURE;
  }
}

#else
int main()
{
  std::cout << "You do not have an afma6 robot connected to your computer..." << std::endl;
  return EXIT_SUCCESS;
}

#endif