1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* tests the control law
* eye-in-hand control
* velocity computed in the camera frame
*/
/*!
\file servoAfma6TwoLines2DCamVelocity.cpp
\example servoAfma6TwoLines2DCamVelocity.cpp
\brief Example of eye-in-hand control law. We control here a real robot, the
Afma6 robot (cartesian robot, with 6 degrees of freedom). The velocity is
computed in the camera frame. Visual features are the two lines.
*/
#include <iostream>
#include <visp3/core/vpConfig.h>
#if defined(VISP_HAVE_REALSENSE2) && defined(VISP_HAVE_DISPLAY) && defined(VISP_HAVE_AFMA6)
#include <visp3/core/vpImage.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpLine.h>
#include <visp3/core/vpMath.h>
#include <visp3/gui/vpDisplayFactory.h>
#include <visp3/robot/vpRobotAfma6.h>
#include <visp3/sensor/vpRealSense2.h>
#include <visp3/me/vpMeLine.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureLine.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
int main()
{
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
try {
vpRealSense2 rs;
rs2::config config;
unsigned int width = 640, height = 480, fps = 60;
config.enable_stream(RS2_STREAM_COLOR, width, height, RS2_FORMAT_RGBA8, fps);
config.enable_stream(RS2_STREAM_DEPTH, width, height, RS2_FORMAT_Z16, fps);
config.enable_stream(RS2_STREAM_INFRARED, width, height, RS2_FORMAT_Y8, fps);
rs.open(config);
vpImage<unsigned char> I;
// Warm up camera
for (size_t i = 0; i < 10; ++i) {
rs.acquire(I);
}
std::shared_ptr<vpDisplay> d = vpDisplayFactory::createDisplay(I, 10, 10, "Current image");
vpDisplay::display(I);
vpDisplay::flush(I);
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << " Test program for vpServo " << std::endl;
std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl;
std::cout << " Simulation " << std::endl;
std::cout << " task : servo a point " << std::endl;
std::cout << "-------------------------------------------------------" << std::endl;
int nb_lines = 2;
std::vector<vpMeLine> line(nb_lines);
vpMe me;
me.setRange(10);
me.setPointsToTrack(100);
me.setLikelihoodThresholdType(vpMe::NORMALIZED_THRESHOLD);
me.setThreshold(15);
me.setSampleStep(10);
// Initialize the tracking. Define the two lines to track
// The two lines to track must be parallels
for (int i = 0; i < nb_lines; ++i) {
line[i].setDisplay(vpMeSite::RANGE_RESULT);
line[i].setMe(&me);
line[i].initTracking(I);
line[i].track(I);
vpDisplay::flush(I);
}
vpRobotAfma6 robot;
robot.init(vpAfma6::TOOL_INTEL_D435_CAMERA, vpCameraParameters::perspectiveProjWithoutDistortion);
// Get camera intrinsics
vpCameraParameters cam;
robot.getCameraParameters(cam, I);
// Sets the current position of the visual feature
std::vector<vpFeatureLine> s_line(nb_lines);
for (int i = 0; i < nb_lines; ++i) {
vpFeatureBuilder::create(s_line[i], cam, line[i]);
}
// Sets the desired position of the visual feature
std::vector<vpLine> line_d(2);
line_d[0].setWorldCoordinates(1, 0, 0, -0.05, 0, 0, 1, 0);
line_d[1].setWorldCoordinates(1, 0, 0, 0.05, 0, 0, 1, 0);
vpHomogeneousMatrix c_M_o(0, 0, 0.5, 0, 0, vpMath::rad(0));
line_d[0].project(c_M_o);
line_d[1].project(c_M_o);
// Those lines are needed to keep the conventions define in vpMeLine
// (Those in vpLine are less restrictive) Another way to have the
// coordinates of the desired features is to learn them before executing
// the program.
line_d[0].setRho(-fabs(line_d[0].getRho()));
line_d[0].setTheta(0);
line_d[1].setRho(-fabs(line_d[1].getRho()));
line_d[1].setTheta(M_PI);
std::vector<vpFeatureLine> s_line_d(nb_lines);
vpFeatureBuilder::create(s_line_d[0], line_d[0]);
vpFeatureBuilder::create(s_line_d[1], line_d[1]);
// Define the task
// - we want an eye-in-hand control law
// - robot is controlled in the camera frame
vpServo task;
task.setServo(vpServo::EYEINHAND_CAMERA);
// - we want to see a line on a line
for (int i = 0; i < nb_lines; ++i) {
task.addFeature(s_line[i], s_line_d[i]);
}
// - set the gain
task.setLambda(0.2);
// -Display task information
task.print();
robot.setRobotState(vpRobot::STATE_VELOCITY_CONTROL);
bool quit = false;
while (!quit) {
rs.acquire(I);
vpDisplay::display(I);
// Track the lines and update the features
for (int i = 0; i < nb_lines; ++i) {
line[i].track(I);
line[i].display(I, vpColor::red);
vpFeatureBuilder::create(s_line[i], cam, line[i]);
s_line[i].display(cam, I, vpColor::red);
s_line_d[i].display(cam, I, vpColor::green);
}
vpColVector v_c = task.computeControlLaw();
robot.setVelocity(vpRobot::CAMERA_FRAME, v_c);
vpDisplay::displayText(I, 20, 20, "Click to quit...", vpColor::red);
if (vpDisplay::getClick(I, false)) {
quit = true;
}
vpDisplay::flush(I);
}
// Display task information
task.print();
return EXIT_SUCCESS;
}
catch (const vpException &e) {
std::cout << "Visual servo failed with exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have an afma6 robot connected to your computer..." << std::endl;
return EXIT_SUCCESS;
}
#endif
|