File: servoViper650Point2DCamVelocity.cpp

package info (click to toggle)
visp 3.7.0-7
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 166,380 kB
  • sloc: cpp: 392,705; ansic: 224,448; xml: 23,444; python: 13,701; java: 4,792; sh: 206; objc: 145; makefile: 118
file content (293 lines) | stat: -rw-r--r-- 9,052 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/*
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2025 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Description:
 *   tests the control law
 *   eye-in-hand control
 *   velocity computed in camera frame
 */

/*!
  \example servoViper650Point2DCamVelocity.cpp

  Example of eye-in-hand control law. We control here a real robot, the
  ADEPT Viper 650 robot (arm, with 6 degrees of freedom). The velocity is
  computed in the camera frame. The visual feature is the center of gravity of
  a point.

  The device used to acquire images is a firewire camera (PointGrey Flea2)

  Camera extrinsic (eMc) and intrinsic parameters are retrieved from the robot
  low level driver that is not public.

*/

#include <fstream>
#include <iostream>
#include <sstream>
#include <stdio.h>
#include <stdlib.h>

#include <visp3/core/vpConfig.h>

#if defined(VISP_HAVE_VIPER650) && defined(VISP_HAVE_DC1394) && defined(VISP_HAVE_X11)

#include <visp3/blob/vpDot2.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpPoint.h>
#include <visp3/gui/vpDisplayFactory.h>
#include <visp3/robot/vpRobotViper650.h>
#include <visp3/sensor/vp1394TwoGrabber.h>
#include <visp3/vision/vpPose.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>

int main()
{
#ifdef ENABLE_VISP_NAMESPACE
  using namespace VISP_NAMESPACE_NAME;
#endif

  // Log file creation in /tmp/$USERNAME/log.dat
  // This file contains by line:
  // - the 6 computed camera velocities (m/s, rad/s) to achieve the task
  // - the 6 measured joint velocities (m/s, rad/s)
  // - the 6 measured joint positions (m, rad)
  // - the 2 values of s - s*
  std::string username;
  // Get the user login name
  vpIoTools::getUserName(username);

  // Create a log filename to save velocities...
  std::string logdirname;
  logdirname = "/tmp/" + username;

  // Test if the output path exist. If no try to create it
  if (vpIoTools::checkDirectory(logdirname) == false) {
    try {
      // Create the dirname
      vpIoTools::makeDirectory(logdirname);
    }
    catch (...) {
      std::cerr << std::endl << "ERROR:" << std::endl;
      std::cerr << "  Cannot create " << logdirname << std::endl;
      return EXIT_FAILURE;
    }
  }
  std::string logfilename;
  logfilename = logdirname + "/log.dat";

  // Open the log file name
  std::ofstream flog(logfilename.c_str());

#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
  std::shared_ptr<vpDisplay> display;
#else
  vpDisplay *display = nullptr;
#endif
  try {
    vpRobotViper650 robot;

    vpServo task;

    vpImage<unsigned char> I;

    bool reset = false;
    vp1394TwoGrabber g(reset);

#if 1
    g.setVideoMode(vp1394TwoGrabber::vpVIDEO_MODE_640x480_MONO8);
    g.setFramerate(vp1394TwoGrabber::vpFRAMERATE_60);
#else
    g.setVideoMode(vp1394TwoGrabber::vpVIDEO_MODE_FORMAT7_0);
    g.setColorCoding(vp1394TwoGrabber::vpCOLOR_CODING_MONO8);
#endif
    g.open(I);

#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
    display = vpDisplayFactory::createDisplay(I, 100, 100, "Current image");
#else
    display = vpDisplayFactory::allocateDisplay(I, 100, 100, "Current image");
#endif
    vpDisplay::display(I);
    vpDisplay::flush(I);

    vpDot2 dot;

    dot.setGraphics(true);

    for (int i = 0; i < 10; i++) // warm up the camera
      g.acquire(I);

    std::cout << "Click on a dot..." << std::endl;
    dot.initTracking(I);

    vpImagePoint cog = dot.getCog();
    vpDisplay::displayCross(I, cog, 10, vpColor::blue);
    vpDisplay::flush(I);

    vpCameraParameters cam;
    // Update camera parameters
    robot.getCameraParameters(cam, I);

    // sets the current position of the visual feature
    vpFeaturePoint p;
    // retrieve x,y and Z of the vpPoint structure
    vpFeatureBuilder::create(p, cam, dot);

    // sets the desired position of the visual feature
    vpFeaturePoint pd;
    pd.buildFrom(0, 0, 1);

    // define the task
    // - we want an eye-in-hand control law
    // - robot is controlled in the camera frame
    task.setServo(vpServo::EYEINHAND_CAMERA);

    // - we want to see a point on a point
    task.addFeature(p, pd);

    // - set the constant gain
    task.setLambda(0.8);

    // Display task information
    task.print();

    // Now the robot will be controlled in velocity
    robot.setRobotState(vpRobot::STATE_VELOCITY_CONTROL);

    std::cout << "\nHit CTRL-C or click in the image to stop the loop...\n" << std::flush;

    for (;;) {
      // Acquire a new image from the camera
      g.acquire(I);

      // Display this image
      vpDisplay::display(I);

      try {
        // Achieve the tracking of the dot in the image
        dot.track(I);
      }
      catch (...) {
        std::cout << "Error detected while tracking visual features.." << std::endl;
        break;
      }

      // Get the dot cog
      cog = dot.getCog();

      // Display a green cross at the center of gravity position in the image
      vpDisplay::displayCross(I, cog, 10, vpColor::green);

      // Update the point feature from the dot location
      vpFeatureBuilder::create(p, cam, dot);

      // Compute the visual servoing skew vector
      vpColVector v = task.computeControlLaw();

      // Display the current and desired feature points in the image display
      vpServoDisplay::display(task, cam, I);

      // Apply the computed camera velocities to the robot
      robot.setVelocity(vpRobot::CAMERA_FRAME, v);

      // Save velocities applied to the robot in the log file
      // v[0], v[1], v[2] correspond to camera translation velocities in m/s
      // v[3], v[4], v[5] correspond to camera rotation velocities in rad/s
      flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";

      // Get the measured joint velocities of the robot
      vpColVector qvel;
      robot.getVelocity(vpRobot::ARTICULAR_FRAME, qvel);
      // Save measured joint velocities of the robot in the log file:
      // - qvel[0], qvel[1], qvel[2] correspond to measured joint translation
      //   velocities in m/s
      // - qvel[3], qvel[4], qvel[5] correspond to measured joint rotation
      //   velocities in rad/s
      flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " " << qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";

      // Get the measured joint positions of the robot
      vpColVector q;
      robot.getPosition(vpRobot::ARTICULAR_FRAME, q);
      // Save measured joint positions of the robot in the log file
      // - q[0], q[1], q[2] correspond to measured joint translation
      //   positions in m
      // - q[3], q[4], q[5] correspond to measured joint rotation
      //   positions in rad
      flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";

      // Save feature error (s-s*) for the feature point. For this feature
      // point, we have 2 errors (along x and y axis).  This error is
      // expressed in meters in the camera frame
      flog << (task.getError()).t() << std::endl; // s-s* for point

      vpDisplay::displayText(I, 10, 10, "Click to quit...", vpColor::red);
      if (vpDisplay::getClick(I, false))
        break;

      // Flush the display
      vpDisplay::flush(I);
    }

    robot.stopMotion();

    flog.close(); // Close the log file

    // Display task information
    task.print();
#if (VISP_CXX_STANDARD < VISP_CXX_STANDARD_11)
    if (display != nullptr) {
      delete display;
    }
#endif
    return EXIT_SUCCESS;
  }
  catch (const vpException &e) {
    flog.close(); // Close the log file
    std::cout << "Catched an exception: " << e.getMessage() << std::endl;
#if (VISP_CXX_STANDARD < VISP_CXX_STANDARD_11)
    if (display != nullptr) {
      delete display;
    }
#endif
    return EXIT_FAILURE;
  }
}

#else
int main()
{
  std::cout << "You do not have an Viper 650 robot connected to your computer..." << std::endl;
  return EXIT_SUCCESS;
}
#endif