File: testRobotViper850-frames.cpp

package info (click to toggle)
visp 3.7.0-7
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 166,380 kB
  • sloc: cpp: 392,705; ansic: 224,448; xml: 23,444; python: 13,701; java: 4,792; sh: 206; objc: 145; makefile: 118
file content (381 lines) | stat: -rw-r--r-- 12,872 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
/*
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2024 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Description:
 * Test Viper 650 robot.
 */

/*!
  \example testRobotViper850-frames.cpp

  Test Viper 650 robot joint and cartesian control.
*/

#include <iostream>
#include <visp3/robot/vpRobotViper850.h>

#ifdef VISP_HAVE_VIPER850
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
bool pose_equal(const vpHomogeneousMatrix &M1, const vpHomogeneousMatrix &M2, double epsilon = 1e-6)
{
  vpTranslationVector t1, t2;
  M1.extract(t1);
  M2.extract(t2);
  vpThetaUVector tu1, tu2;
  M1.extract(tu1);
  M2.extract(tu2);

  for (unsigned int i = 0; i < 3; i++) {
    if (std::fabs(t1[i] - t2[i]) > epsilon)
      return false;
    if (std::fabs(tu1[i] - tu2[i]) > epsilon)
      return false;
  }
  return true;
}

bool joint_equal(const vpColVector &q1, const vpColVector &q2, double epsilon = 1e-6)
{
  for (unsigned int i = 0; i < q1.size(); i++) {
    if (std::fabs(q1[i] - q2[i]) > epsilon) {
      return false;
    }
  }
  return true;
}

int main()
{
  try {
    //********* Define transformation from end effector to tool frame
    vpHomogeneousMatrix eMt;

#if 0
    // In this case, we set tool frame to the end of the two fingers pneumatic gripper
    eMt[0][0] = 0;
    eMt[1][0] = 0;
    eMt[2][0] = -1;

    eMt[0][1] = -sqrt(2)/2;
    eMt[1][1] = -sqrt(2)/2;
    eMt[2][1] = 0;

    eMt[0][2] = -sqrt(2)/2;
    eMt[1][2] = sqrt(2)/2;
    eMt[2][2] = 0;

    eMt[0][3] = -0.177;
    eMt[1][3] = 0.177;
    eMt[2][3] = 0.077;
#else
    // In this case, we set tool frame to the PTGrey Flea2 camera frame
    vpTranslationVector etc(-0.04437278107, -0.001192883711, 0.07808296844);
    vpRxyzVector erxyzc(vpMath::rad(0.7226737722), vpMath::rad(2.103893926), vpMath::rad(-90.46213439));
    eMt.buildFrom(etc, vpRotationMatrix(erxyzc));
#endif
    std::cout << "eMt:\n" << eMt << std::endl;

    //********* Init robot
    std::cout << "Connection to Viper 850 robot" << std::endl;
    vpRobotViper850 robot;
    robot.init(vpViper850::TOOL_CUSTOM, eMt);

    // Move robot to repos position
    vpColVector repos(6);        // q1, q4, q6 = 0
    repos[1] = vpMath::rad(-90); // q2
    repos[2] = vpMath::rad(180); // q3
    repos[4] = vpMath::rad(90);  // q5

    robot.setPosition(vpRobot::ARTICULAR_FRAME, repos);

    vpColVector q;
    robot.getPosition(vpRobotViper850::ARTICULAR_FRAME, q);

    std::cout << "q: " << q.t() << std::endl;

    vpHomogeneousMatrix fMw, fMe, fMt, cMe;
    robot.get_fMw(q, fMw);
    robot.get_fMe(q, fMe);
    robot.get_fMc(q, fMt);
    robot.get_cMe(cMe);

    std::cout << "fMw:\n" << fMw << std::endl;
    std::cout << "fMe:\n" << fMe << std::endl;
    std::cout << "fMt:\n" << fMt << std::endl;
    std::cout << "eMc:\n" << cMe.inverse() << std::endl;

    //********* Check if retrieved eMt transformation is the one that was set
    // during init
    if (1) {
      vpHomogeneousMatrix eMt_ = fMe.inverse() * fMt;
      std::cout << "eMt_:\n" << eMt_ << std::endl;

      // Compare pose
      std::cout << "Compare pose eMt and eMt_:" << std::endl;
      if (!pose_equal(eMt, eMt_, 1e-4)) {
        std::cout << "  Error: Pose eMt differ" << std::endl;
        std::cout << "\nTest failed" << std::endl;
        return EXIT_FAILURE;
      }
      std::cout << "  They are the same, we can continue" << std::endl;

      //********* Check if retrieved eMc transformation is the one that was
      // set

      std::cout << "eMc:\n" << cMe.inverse() << std::endl;
      // Compare pose
      std::cout << "Compare pose eMt and eMc:" << std::endl;
      if (!pose_equal(eMt, cMe.inverse(), 1e-4)) {
        std::cout << "  Error: Pose eMc differ" << std::endl;
        std::cout << "\nTest failed" << std::endl;
        return EXIT_FAILURE;
      }
      std::cout << "  They are the same, we can continue" << std::endl;
    }

    //********* Check if position in reference frame is equal to fMt
    if (1) {
      vpColVector f_pose_t; // translation vector + rxyz vector
      robot.getPosition(vpRobot::REFERENCE_FRAME, f_pose_t);
      // Compute homogeneous transformation
      vpTranslationVector f_t_t;
      vpRxyzVector f_rxyz_t;
      for (unsigned int i = 0; i < 3; i++) {
        f_t_t[i] = f_pose_t[i];
        f_rxyz_t[i] = f_pose_t[i + 3];
      }
      vpHomogeneousMatrix fMt_(f_t_t, vpRotationMatrix(f_rxyz_t));
      std::cout << "fMt_ (from ref frame):\n" << fMt_ << std::endl;

      std::cout << "Compare pose fMt and fMt_:" << std::endl;
      if (!pose_equal(fMt, fMt_, 1e-4)) {
        std::cout << "  Error: Pose fMt differ" << std::endl;
        std::cout << "\nTest failed" << std::endl;
        return EXIT_FAILURE;
      }
      std::cout << "  They are the same, we can continue" << std::endl;
    }

    //********* Test inverse kinematics
    if (1) {
      vpColVector q1;
      robot.getInverseKinematics(fMt, q1);

      std::cout << "Move robot in joint (the robot should not move)" << std::endl;
      robot.setRobotState(vpRobot::STATE_POSITION_CONTROL);
      robot.setPosition(vpRobotViper850::ARTICULAR_FRAME, q1);

      vpColVector q2;
      robot.getPosition(vpRobot::ARTICULAR_FRAME, q2);
      std::cout << "Reach joint position q2: " << q2.t() << std::endl;

      std::cout << "Compare joint position q and q2:" << std::endl;
      if (!joint_equal(q, q2, 1e-4)) {
        std::cout << "  Error: Joint position differ" << std::endl;
        std::cout << "\nTest failed" << std::endl;
        return EXIT_FAILURE;
      }
      std::cout << "  They are the same, we can continue" << std::endl;
    }

    //********* Check if fMt position can be set in reference frame
    if (1) {
      vpColVector f_pose_t(6);
      vpTranslationVector f_t_t = fMt.getTranslationVector();
      vpRxyzVector f_rxyz_t(fMt.getRotationMatrix());
      for (unsigned int i = 0; i < 3; i++) {
        f_pose_t[i] = f_t_t[i];
        f_pose_t[i + 3] = f_rxyz_t[i];
      }

      std::cout << "Move robot in reference frame (the robot should not move)" << std::endl;
      robot.setPosition(vpRobot::REFERENCE_FRAME, f_pose_t);
      vpColVector q3;
      robot.getPosition(vpRobot::ARTICULAR_FRAME, q3);
      std::cout << "Reach joint position q3: " << q3.t() << std::endl;
      std::cout << "Compare joint position q and q3:" << std::endl;
      if (!joint_equal(q, q3, 1e-4)) {
        std::cout << "  Error: Joint position differ" << std::endl;
        std::cout << "\nTest failed" << std::endl;
        return EXIT_FAILURE;
      }
      std::cout << "  They are the same, we can continue" << std::endl;
    }

    //********* Position control in tool frame
    if (1) {
      // from the current position move the tool frame
      vpHomogeneousMatrix tMt;
      // tMt[0][3] = 0.05; // along x_t
      tMt[1][3] = 0.05; // along y_t
      //  tMt[2][3] = 0.05; // along z_t

      vpHomogeneousMatrix fMt_ = fMt * tMt; // New position to reach
      robot.getInverseKinematics(fMt_, q);

      std::cout << "fMt_:\n" << fMt_ << std::endl;

      std::cout << "Move robot in joint position to reach fMt_" << std::endl;
      robot.setRobotState(vpRobot::STATE_POSITION_CONTROL);
      robot.setPosition(vpRobotViper850::ARTICULAR_FRAME, q);

      vpPoseVector fpt_;
      robot.getPosition(vpRobot::REFERENCE_FRAME, fpt_);

      std::cout << "fpt_:\n" << vpHomogeneousMatrix(fpt_) << std::endl;

      std::cout << "Compare pose fMt_ and fpt_:" << std::endl;
      if (!pose_equal(fMt_, vpHomogeneousMatrix(fpt_), 1e-4)) {
        std::cout << "  Error: Pose fMt_ differ" << std::endl;
        std::cout << "\nTest failed" << std::endl;
        return EXIT_FAILURE;
      }
      std::cout << "  They are the same, we can continue" << std::endl;
    }

    //********* Velocity control in tool frame along z
    if (0) {
      double t_init = vpTime::measureTimeMs();
      vpColVector v_t(6);
      v_t = 0;
      // v_t[2] = 0.01; // translation velocity along z_t
      v_t[5] = vpMath::rad(5); // rotation velocity along z_t

      std::cout << "Move robot in camera velocity" << std::endl;
      robot.setRobotState(vpRobot::STATE_VELOCITY_CONTROL);
      while (vpTime::measureTimeMs() - t_init < 6000) {
        // std::cout << "send vel: " << v_t() << std::endl;
        robot.setVelocity(vpRobotViper850::CAMERA_FRAME, v_t);
      }
    }

    //********* Velocity control in tool frame along z using joint velocity
    if (0) {
      // We need to stop the robot before changing velocity control from joint
      // to cartesian
      robot.setRobotState(vpRobot::STATE_STOP);
      vpVelocityTwistMatrix tVe(eMt.inverse());
      vpMatrix eJe;

      double t_init = vpTime::measureTimeMs();
      vpColVector v_t(6), q_dot;
      v_t = 0;
      // v_t[2] = -0.01; // translation velocity along z_t
      v_t[5] = vpMath::rad(-5); // rotation velocity along z_t

      std::cout << "Move robot in joint velocity" << std::endl;
      robot.setRobotState(vpRobot::STATE_VELOCITY_CONTROL);
      while (vpTime::measureTimeMs() - t_init < 6000) {
        robot.get_eJe(eJe);
        vpMatrix tJt = tVe * eJe;
        q_dot = tJt.pseudoInverse() * v_t;
        // std::cout << "send vel: " << q_dot.t() << std::endl;
        robot.setVelocity(vpRobotViper850::ARTICULAR_FRAME, q_dot);
      }
    }

    //********* Velocity control in tool frame along x
    if (1) {
      robot.setRobotState(vpRobot::STATE_STOP);
      double t_init = vpTime::measureTimeMs();
      vpColVector v_t(6);
      v_t = 0;
      v_t[3] = vpMath::rad(5); // rotation velocity along x_t

      std::cout << "Move robot in camera velocity" << std::endl;
      robot.setRobotState(vpRobot::STATE_VELOCITY_CONTROL);
      while (vpTime::measureTimeMs() - t_init < 6000) {
        // std::cout << "send vel: " << v_t() << std::endl;
        robot.setVelocity(vpRobotViper850::CAMERA_FRAME, v_t);
      }
    }

    //********* Velocity control in tool frame along x using joint velocity
    if (1) {
      // We need to stop the robot before changing velocity control from joint
      // to cartesian
      robot.setRobotState(vpRobot::STATE_STOP);
      vpVelocityTwistMatrix tVe(eMt.inverse());
      vpMatrix eJe;

      double t_init = vpTime::measureTimeMs();
      vpColVector v_t(6), q_dot;
      v_t = 0;
      v_t[3] = vpMath::rad(-5); // rotation velocity along x_t

      std::cout << "Move robot in joint velocity" << std::endl;
      robot.setRobotState(vpRobot::STATE_VELOCITY_CONTROL);
      while (vpTime::measureTimeMs() - t_init < 6000) {
        robot.get_eJe(eJe);
        vpMatrix tJt = tVe * eJe;
        q_dot = tJt.pseudoInverse() * v_t;
        // std::cout << "send vel: " << q_dot.t() << std::endl;
        robot.setVelocity(vpRobotViper850::ARTICULAR_FRAME, q_dot);
      }
    }

    //********* Position control in tool frame
    if (1) {
      robot.setRobotState(vpRobot::STATE_STOP);
      // get current position
      robot.getPosition(vpRobotViper850::ARTICULAR_FRAME, q);

      robot.get_fMc(q, fMt);

      vpHomogeneousMatrix tMt; // initialized to identity
      // tMt[0][3] = -0.05; // along x_t
      tMt[1][3] = -0.05; // along y_t
      //  tMt[2][3] = -0.05; // along z_t

      robot.getInverseKinematics(fMt * tMt, q);

      std::cout << "Move robot in joint position" << std::endl;
      robot.setRobotState(vpRobot::STATE_POSITION_CONTROL);
      robot.setPosition(vpRobotViper850::ARTICULAR_FRAME, q);
    }
    std::cout << "The end" << std::endl;
    std::cout << "Test succeed" << std::endl;
    return EXIT_SUCCESS;
  }
  catch (const vpException &e) {
    std::cout << "Test failed with exception: " << e.getMessage() << std::endl;
    return EXIT_FAILURE;
  }
}

#else
int main()
{
  std::cout << "The real Viper850 robot controller is not available." << std::endl;
  return EXIT_SUCCESS;
}

#endif