1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2024 ViSP contributor
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import bpy
import os
import cv2 as cv
import numpy as np
from mathutils import geometry, Vector
# https://www.rojtberg.net/1601/from-blender-to-opencv-camera-and-back/
def get_calibration_matrix_K_from_blender(camera_name):
# get the relevant data
cam = bpy.data.objects[camera_name].data
scene = bpy.context.scene
# assume image is not scaled
assert scene.render.resolution_percentage == 100
# assume angles describe the horizontal field of view
assert cam.sensor_fit != 'VERTICAL'
f_in_mm = cam.lens
sensor_width_in_mm = cam.sensor_width
w = scene.render.resolution_x
h = scene.render.resolution_y
pixel_aspect = scene.render.pixel_aspect_y / scene.render.pixel_aspect_x
f_x = f_in_mm / sensor_width_in_mm * w
f_y = f_x * pixel_aspect
# yes, shift_x is inverted. WTF blender?
c_x = w * (0.5 - cam.shift_x)
# and shift_y is still a percentage of width..
c_y = h * 0.5 + w * cam.shift_y
K = np.array([
[f_x, 0, c_x],
[0, f_y, c_y],
[0, 0, 1]
])
return K
def inv_transfo(w_T_o):
R = w_T_o[:3,:3]
t = w_T_o[:3,3]
o_T_w = np.eye(4)
o_T_w[:3,:3] = R.T
o_T_w[:3,3] = -R.T @ t
return o_T_w
def get_camera_pose(cameraName, objectName):
# Camera frame in OpenGL:
# X-axis to the right
# Y-axis up
# Z-axis backward
cv_M_gl = np.eye(4)
cv_M_gl[1][1] = -1
cv_M_gl[2][2] = -1
cam = bpy.data.objects[cameraName]
object_pose = bpy.data.objects[objectName].matrix_world
# Normalize orientation with respect to the scale
object_pose_normalized_blender = object_pose.copy()
object_orientation_normalized_blender = object_pose_normalized_blender.to_3x3().normalized()
for i in range(3):
for j in range(3):
object_pose_normalized_blender[i][j] = object_orientation_normalized_blender[i][j]
w_T_o = np.array(object_pose_normalized_blender)
print(f"object_pose_normalized:\n{object_pose_normalized_blender}")
w_T_c = np.array(cam.matrix_world) @ cv_M_gl
print(f"w_T_c:\n{w_T_c}")
c_T_w = cv_M_gl @ np.array(cam.matrix_world.inverted())
print(f"c_T_w:\n{c_T_w}")
c_T_o = c_T_w @ w_T_o
print(f"c_T_o:\n{c_T_o}")
return c_T_o
def get_object_vertices(objectName):
# https://blender.stackexchange.com/questions/3637/get-indices-of-vertices-of-triangulated-faces-in-python/3657#3657
obj = bpy.data.objects[objectName]
mesh = obj.data
model_faces = []
model_normals = []
for face in mesh.polygons:
face_vert = []
for i in range(len(face.vertices)):
vert = mesh.vertices[face.vertices[i]]
vert_xyz = vert.co.xyz
face_vert.append(vert_xyz)
model_normals.append(vert.normal)
model_faces.append(face_vert)
return [model_faces, model_normals]
def vec_augment(pt_3d):
return np.array([pt_3d[0], pt_3d[1], pt_3d[2], 1])
def convert_pt(pt_3d, w_T_o):
o_pt = vec_augment(pt_3d)
w_pt = w_T_o @ o_pt
return w_pt[:,3]
def compute_ray(K, im_pt):
fx = K[0,0]
fy = K[1,1]
cx = K[0,2]
cy = K[1,2]
x = (im_pt[0] - cx) / fx
y = (im_pt[1] - cy) / fy
return np.array([x, y, 1])
def is_face_visible(ray_, vertex0_, normal_):
# back-face culling
# https://en.wikipedia.org/wiki/Back-face_culling
ray = np.array(ray_)
vertex0 = np.array(vertex0_)
normal = np.array(normal_)
eps = 1e-9
return np.dot((vertex0 - ray), normal) > eps
def ray_vertex_intersection(ray, vertex, c_T_o):
c_vert0 = c_T_o @ vec_augment(vertex[0])
c_vert1 = c_T_o @ vec_augment(vertex[1])
c_vert2 = c_T_o @ vec_augment(vertex[2])
# https://docs.blender.org/api/4.3/mathutils.geometry.html#mathutils.geometry.intersect_ray_tri
clip = True
intersect = geometry.intersect_ray_tri(c_vert0, c_vert1, c_vert2, ray, [0,0,0], clip)
return intersect
def getNED(lon_, lat_, r, in_radian=False):
"""
Get the homogeneous transformation matrix corresponding to the local tangent plane transformation at the specified
longitude/latitude and radius coordinates, using the NED and ECEF conventions and a perfect sphere.
See also:
- https://en.wikipedia.org/wiki/Earth-centered,_Earth-fixed_coordinate_system
- https://en.wikipedia.org/wiki/Local_tangent_plane_coordinates
Parameters
----------
lon_: float
The longitude coordinate.
lat_: float
The latitude coordinate.
r: float
The sphere radius.
in_radian: boolean
If true coordinates are in radian, otherwise in degree.
Returns:
-------
numpy matrix
The homogeneous matrix allowing converting a 3D point expressed in the NED frame to the ECEF frame.
"""
if not in_radian:
# lambda
lon = np.radians(lon_)
# phi
lat = np.radians(lat_)
else:
lon = lon_
lat = lat_
Tdata = [ [-np.sin(lat)*np.cos(lon), -np.sin(lon), -np.cos(lat)*np.cos(lon), r*np.cos(lon)*np.cos(lat)], \
[-np.sin(lat)*np.sin(lon), np.cos(lon), -np.cos(lat)*np.sin(lon), r*np.sin(lon)*np.cos(lat)], \
[ np.cos(lat), 0, -np.sin(lat), r*np.sin(lat)], \
[ 0, 0, 0, 1] \
]
T = np.matrix(Tdata)
return T
def getENU(lon_, lat_, r, in_radian=False):
"""
Get the homogeneous transformation matrix corresponding to the local tangent plane transformation at the specified
longitude/latitude and radius coordinates, using the ENU and ECEF conventions and a perfect sphere.
See also:
- https://en.wikipedia.org/wiki/Earth-centered,_Earth-fixed_coordinate_system
- https://en.wikipedia.org/wiki/Local_tangent_plane_coordinates
Parameters
----------
lon_: float
The longitude coordinate.
lat_: float
The latitude coordinate.
r: float
The sphere radius.
in_radian: boolean
If true coordinates are in radian, otherwise in degree.
Returns:
-------
numpy matrix
The homogeneous matrix allowing converting a 3D point expressed in the ENU frame to the ECEF frame.
"""
if not in_radian:
# lambda
lon = np.radians(lon_)
# phi
lat = np.radians(lat_)
else:
lon = lon_
lat = lat_
Tdata = [ [-np.sin(lon), -np.sin(lat)*np.cos(lon), np.cos(lat)*np.cos(lon), r*np.cos(lon)*np.cos(lat)], \
[ np.cos(lon), -np.sin(lat)*np.sin(lon), np.cos(lat)*np.sin(lon), r*np.sin(lon)*np.cos(lat)], \
[ 0, np.cos(lat), np.sin(lat), r*np.sin(lat)], \
[ 0, 0, 0, 1] \
]
T = np.matrix(Tdata)
return T
def regular_on_sphere_points(num, full_sphere=False):
"""
Generate equidistributed points on the surface of a sphere.
From:
- "How to generate equidistributed points on the surface of a sphere", Markus Deserno
- https://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf
- https://gist.github.com/dinob0t/9597525
Parameters
----------
num: int
The desired number of points on the surface of a sphere.
Returns:
-------
list
The list of equidistributed points on the surface of a sphere in the lon-lat coordinates.
Note:
-------
This method does not return exactly the specified number of points.
"""
r = 1
points = []
# Break out if zero points
if num == 0:
return points
a = 4.0 * np.pi*(r**2.0 / num)
d = np.sqrt(a)
m_theta = int(round(np.pi / d))
d_theta = np.pi / m_theta
d_phi = a / d_theta
pi_2 = np.pi/2
if full_sphere:
m_upper_bound = m_theta
else:
m_upper_bound = int(m_theta/2)
for m in range(m_upper_bound):
theta = np.pi * (m + 0.5) / m_theta
m_phi = int(round(2.0 * np.pi * np.sin(theta) / d_phi))
for n in range(m_phi):
phi = 2.0 * np.pi * n / m_phi
lon = phi
lat = pi_2-theta
points.append([lon,lat])
return points
def look_at(ecef_T_cv, point):
# https://blender.stackexchange.com/questions/5210/pointing-the-camera-in-a-particular-direction-programmatically/5220#5220
# https://docs.blender.org/api/current/mathutils.html#mathutils.Vector
direction = Vector((point[0], point[1], point[2])) - Vector((ecef_T_cv[0,3], ecef_T_cv[1,3], ecef_T_cv[2,3]))
# point the cameras '-Z' and use its 'Y' as up
rot_quat = direction.to_track_quat('-Z', 'Y')
ecef_T_cv_look_at = np.eye(4)
# https://docs.blender.org/api/current/mathutils.html#mathutils.Quaternion.to_matrix
ecef_T_cv_look_at[:3,:3] = rot_quat.to_matrix()
ecef_T_cv_look_at[:3,3] = ecef_T_cv[:3,3].ravel()
return ecef_T_cv_look_at
def set_camera_pose(obj_camera, pose):
# gl2cv = Matrix().to_4x4()
# gl2cv[1][1] = -1
# gl2cv[2][2] = -1
# obj_camera.matrix_world = (gl2cv * Matrix(pose)).inverted()
# cv_T_gl = np.eye(4)
# cv_T_gl[1,1] = -1
# cv_T_gl[1,2] = -1
# w_T_cv = pose
# w_T_gl = w_T_cv @ cv_T_gl
# # obj_camera.matrix_world = w_T_gl.T
# obj_camera.matrix_world = w_T_gl
# Column-major?
obj_camera.matrix_world = pose.T
if __name__ == "__main__":
output_dir = "/tmp"
output_file_pattern_string = "blender_render_%04d.png"
K = get_calibration_matrix_K_from_blender("Camera")
print(f"Camera Matrix:\n", K)
data_dict = dict()
data_dict["K"] = K
debug_print = False
npoints = 60
full_sphere = False
regular_surf_points = regular_on_sphere_points(npoints, full_sphere)
print(f"regular_surf_points={len(regular_surf_points)}\n{regular_surf_points}")
# Transformation from CV frame to NED frame
ned_T_cv = np.eye(4)
ned_T_cv[0,0] = 0
ned_T_cv[0,1] = -1
ned_T_cv[1,0] = 1
ned_T_cv[1,1] = 0
print(f"ned_T_cv:\n{ned_T_cv}")
radius = 5.0
camera_name = "Camera"
object_name = "Suzanne"
camera = bpy.data.objects[camera_name]
for keyframe, point in enumerate(regular_surf_points):
print()
print(f"{keyframe+1}/{len(regular_surf_points)}")
lon = point[0]
lat = point[1]
in_radian = True
ecef_T_ned = getNED(lon, lat, radius, in_radian)
ecef_T_cv = ecef_T_ned @ ned_T_cv
print(f"ecef_T_cv:\n{ecef_T_cv}")
ecef_T_cv_look_at = look_at(ecef_T_cv, np.zeros((3,1)))
print(f"ecef_T_cv_look_at:\n{ecef_T_cv_look_at}")
set_camera_pose(camera, ecef_T_cv_look_at)
output_filepath = os.path.join(output_dir, (output_file_pattern_string % keyframe))
bpy.context.scene.render.filepath = output_filepath
bpy.ops.render.render(write_still = True)
img = cv.imread(output_filepath)
print(f"img: {img.shape}")
sift_detector = cv.SIFT.create()
keypoints, descriptors = sift_detector.detectAndCompute(img, None)
if keypoints is not None and descriptors is not None:
print(f"keypoints: {len(keypoints)} ; type={type(keypoints)}")
print(f"descriptors: {len(descriptors)} ; type={type(descriptors)} ; shape={descriptors.shape}")
if keypoints is None:
keypoints = []
if descriptors is None:
descriptors = []
c_T_o = get_camera_pose(camera_name, object_name)
obj_faces_vert, obj_faces_normal = get_object_vertices(object_name)
print(f"obj_faces_vert={len(obj_faces_vert)}")
if debug_print:
for face_id, face in enumerate(obj_faces_vert):
print(f"\nFace {face_id}")
print(f" normal: {obj_faces_normal[face_id]}")
for vertex_id, vertex in enumerate(face):
print(f" vertex {vertex_id}: {face}")
pointcloud = []
image_pts = []
object_pts = []
descriptors_pcl = []
img_results = np.copy(img)
for idx, kpt in enumerate(keypoints):
kpt_pt_normalized = compute_ray(K, kpt.pt)
# print(f"kpt: {kpt_pt_normalized}")
kpt_pt = np.array(kpt.pt, dtype=np.int32)
cv.drawMarker(img_results, kpt_pt, (0,0,255),cv.MARKER_CROSS, 6, 1)
for face_id, face in enumerate(obj_faces_vert):
is_visible = is_face_visible(kpt_pt_normalized, face[0], obj_faces_normal[face_id])
if is_visible:
intersect_pt = ray_vertex_intersection(kpt_pt_normalized, face, c_T_o)
if intersect_pt is not None:
if debug_print:
print(f"Face {face_id}, is visible={is_visible}, intersect_pt={intersect_pt}")
pointcloud.append([intersect_pt[0], intersect_pt[1], intersect_pt[2]])
image_pts.append(kpt_pt)
c_object_pt = vec_augment([intersect_pt[0], intersect_pt[1], intersect_pt[2]])
o_object_pt = inv_transfo(c_T_o) @ c_object_pt
object_pts.append(o_object_pt[:3])
descriptors_pcl.append(descriptors[idx])
cv.imwrite("/tmp/blender_render_{:04d}_results.png".format(keyframe), img_results)
data_dict["image_{:04d}".format(keyframe)] = img
data_dict["pointcloud_{:04d}".format(keyframe)] = pointcloud
data_dict["image_pts_{:04d}".format(keyframe)] = image_pts
data_dict["object_pts_{:04d}".format(keyframe)] = object_pts
data_dict["descriptors_pcl_{:04d}".format(keyframe)] = descriptors_pcl
data_dict["descriptors_{:04d}".format(keyframe)] = descriptors
data_dict["c_T_o_{:04d}".format(keyframe)] = c_T_o
data_dict["nb_data"] = len(regular_surf_points)
np.savez("/tmp/blender_render_keypoints_sampling.npz", **data_dict)
|