1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2024 ViSP contributor
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import cv2 as cv
import numpy as np
import math
import random
def vec_augment(pt_3d):
return np.array([pt_3d[0], pt_3d[1], pt_3d[2], 1])
def project(pt_3d, K, c_T_o):
pt_4d = vec_augment(pt_3d)
perspective_proj = np.zeros((3,4))
perspective_proj[0:3,0:3] = np.eye(3)
pt_2d = K @ perspective_proj @ c_T_o @ pt_4d
pt_2d[0] /= pt_2d[2]
pt_2d[1] /= pt_2d[2]
return pt_2d[:2]
def draw_keypoints(img, pointcloud, K, c_T_o):
for idx in range(pointcloud.shape[0]):
pt_3d = pointcloud[idx,]
# print(f"pt_3d={pt_3d}")
# pt_2d = project(pt_3d, K, np.eye(4))
pt_2d = project(pt_3d, K, c_T_o)
# print(f"pt_2d={pt_2d}")
pos = pt_2d.astype(np.int32)
# print(f"pos={pos}")
cv.drawMarker(img, pos, (0,0,255), cv.MARKER_CROSS, 6, 1)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Keypoints matching.')
parser.add_argument("--input", type=str, default="/tmp/blender_render.png", help="Input image")
parser.add_argument("--npz", type=str, default="/tmp/blender_render_keypoints_sampling.npz", help="NPZ filepath")
parser.add_argument("--gt", type=str, default="/tmp/c_T_o.txt", help="Ground truth pose")
parser.add_argument("--display-ransac", action="store_true", help="Display matching after RANSAC")
parser.add_argument("--random-colors", action="store_true", help="Random color")
parser.add_argument("--flann", action="store_true", help="Use FLANN-based matching, other BF with cross-check")
parser.add_argument('--ransac-iter', type=int, default=1000, help='RANSAC iterations count.')
parser.add_argument('--ransac-reproj-error', type=float, default=6.0, help='RANSAC reprojection error.')
args = parser.parse_args()
# print(cv.getBuildInformation())
input_img = args.input
print(f"Input image filepath: {input_img}")
img = cv.imread(input_img)
print(f"img: {img.shape}")
input_npz = args.npz
print(f"Input NPZ: {input_npz}")
npz_data = np.load(input_npz)
nb_data = npz_data["nb_data"]
print(f"nb_data: {nb_data}")
input_gt = args.gt
c_T_o_gt = np.loadtxt(input_gt)
print(f"c_T_o_gt:\n{c_T_o_gt}")
display_after_ransac = args.display_ransac
print(f"Display keypoints matching after RANSAC? {display_after_ransac}")
random_colors = args.random_colors
print(f"random_colors={random_colors}")
flann_matching = args.flann
print(f"Use FLANN-based matching? {flann_matching}")
ransac_iter = args.ransac_iter
print(f"RANSAC iterations: {ransac_iter}")
ransac_reproj_error = args.ransac_reproj_error
print(f"RANSAC reprojection error: {ransac_reproj_error}")
cam_K = npz_data["K"]
print(f"cam_K:\n{cam_K}")
nb_data = npz_data["nb_data"]
train_descriptors = npz_data["descriptors_pcl_{:04d}".format(0)]
train_object_pts = npz_data["object_pts_{:04d}".format(0)]
train_image_pts = npz_data["image_pts_{:04d}".format(0)]
keypoints_img_dict = dict()
for idx in range(train_image_pts.shape[0]):
keypoints_img_dict[idx] = 0
idx_start = train_image_pts.shape[0]
for idx1 in range(1, nb_data):
train_descriptors = np.concatenate((train_descriptors, npz_data["descriptors_pcl_{:04d}".format(idx1)]))
train_object_pts = np.concatenate((train_object_pts, npz_data["object_pts_{:04d}".format(idx1)]))
train_image_pts_cur = npz_data["image_pts_{:04d}".format(idx1)]
train_image_pts = np.concatenate((train_image_pts, train_image_pts_cur))
for _ in range(train_image_pts_cur.shape[0]):
keypoints_img_dict[idx_start] = idx1
idx_start += 1
print(f"train_descriptors: {train_descriptors.shape}")
print(f"train_object_pts: {train_object_pts.shape}")
print(f"train_image_pts: {train_image_pts.shape}")
print(f"keypoints_img_dict: {len(keypoints_img_dict)}")
sift_detector = cv.SIFT.create()
keypoints, descriptors = sift_detector.detectAndCompute(img, None)
print(f"Current keypoints={len(keypoints)}")
print(f"Current descriptors={descriptors.shape}")
crossCheck = True
if flann_matching:
# https://docs.opencv.org/4.x/dc/de2/classcv_1_1FlannBasedMatcher.html
matcher = cv.FlannBasedMatcher.create()
else:
# https://docs.opencv.org/4.x/d3/da1/classcv_1_1BFMatcher.html
matcher = cv.BFMatcher.create(crossCheck=crossCheck)
# https://docs.opencv.org/4.x/db/d39/classcv_1_1DescriptorMatcher.html#a695c0aceafc907c024c24a0b5cdff758
matches = matcher.match(descriptors, train_descriptors)
print(f"matches: {len(matches)}")
pts_3d = []
pts_2d = []
pts_2d_train = []
img_idx = []
for match in matches:
pts_3d.append(train_object_pts[match.trainIdx])
pts_2d.append(keypoints[match.queryIdx].pt)
pts_2d_train.append(train_image_pts[match.trainIdx])
img_idx.append(keypoints_img_dict[match.trainIdx])
pts_3d_np = np.array(pts_3d, dtype=np.float64)
pts_2d_np = np.array(pts_2d, dtype=np.float64)
print(f"pts_3d_np={pts_3d_np.shape}")
print(f"pts_2d_np={pts_2d_np.shape}")
rvec = None
tvec = None
# https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html#ga50620f0e26e02caa2e9adc07b5fbf24e
retval, rvec, tvec, inliers = cv.solvePnPRansac(pts_3d_np, pts_2d_np, cam_K, None, iterationsCount=ransac_iter, reprojectionError=ransac_reproj_error)
print(f"retval={retval}")
if retval == 0:
print(f"Running solvePnPRansac() returns 0")
exit()
rot_3x3, _ = cv.Rodrigues(rvec)
print(f"retval={retval} ; inliers={len(inliers)}")
c_T_o_est = np.eye(4)
c_T_o_est[:3,:3] = rot_3x3
c_T_o_est[:3,3] = tvec.ravel()
rvec_gt, _ = cv.Rodrigues(c_T_o_gt[:3,:3])
tvec_gt = c_T_o_gt[:3,3]
for pt_2d in pts_2d:
cv.drawMarker(img, np.array(pt_2d).astype(np.int32), (0,0,255), cv.MARKER_CROSS, 6, 1)
frame_length = 0.1
cv.drawFrameAxes(img, cam_K, None, rvec, tvec, frame_length, 2)
# cv.drawFrameAxes(img, cam_K, None, rvec_gt, tvec_gt, frame_length, 1)
model = []
model.append([ [0.367188, -0.53125, -0.890625], [0.351562, -0.570312, -0.695312] ])
model.append([ [0.351562, -0.570312, -0.695312], [0.3125, -0.570312, -0.4375] ])
model.append([ [0.3125, -0.570312, -0.4375], [0.257812, -0.554688, -0.3125] ])
model.append([ [0.257812, -0.554688, -0.3125], [0.21875, -0.429688, -0.28125] ])
model.append([ [0.21875, -0.429688, -0.28125], [0.40625, -0.148438, -0.171875] ])
model.append([ [0.40625, -0.148438, -0.171875], [0.59375, 0.164062, -0.125] ])
model.append([ [0.59375, 0.164062, -0.125], [0.789062, 0.328125, -0.125] ])
model.append([ [0.789062, 0.328125, -0.125], [1.03906, 0.492188, -0.085938] ])
model.append([ [1.03906, 0.492188, -0.085938], [1.3125, 0.53125, 0.054688] ])
model.append([ [1.3125, 0.53125, 0.054688], [1.36719, 0.5, 0.296875] ])
model.append([ [1.36719, 0.5, 0.296875], [1.25, 0.546875, 0.46875] ])
model.append([ [1.25, 0.546875, 0.46875], [0.859375, 0.382812, 0.382812] ])
model.append([ [0.859375, 0.382812, 0.382812], [0.796875, 0.359375, 0.539062] ])
model.append([ [0.796875, 0.359375, 0.539062], [0.640625, 0.195312, 0.75] ])
model.append([ [0.640625, 0.195312, 0.75], [0.453125, 0.070312, 0.929688] ])
model.append([ [0.453125, 0.070312, 0.929688], [0, 0.078125, 0.984375] ])
model.append([ [0, 0.078125, 0.984375], [-0.453125, 0.070312, 0.929688] ])
model.append([ [-0.453125, 0.070312, 0.929688], [-0.640625, 0.195312, 0.75] ])
model.append([ [-0.640625, 0.195312, 0.75], [-0.796875, 0.359375, 0.539062] ])
model.append([ [-0.796875, 0.359375, 0.539062], [-1.02344, 0.3125, 0.476562] ])
model.append([ [-1.02344, 0.3125, 0.476562], [-1.23438, 0.421875, 0.507812] ])
model.append([ [-1.23438, 0.421875, 0.507812], [-1.35156, 0.421875, 0.320312] ])
model.append([ [-1.35156, 0.421875, 0.320312], [-1.28125, 0.429688, 0.054688] ])
model.append([ [-1.28125, 0.429688, 0.054688], [-1.03906, 0.328125, -0.101562] ])
model.append([ [-1.03906, 0.328125, -0.101562], [-0.773438, 0.125, -0.140625] ])
model.append([ [-0.773438, 0.125, -0.140625], [-0.59375, 0.164062, -0.125] ])
model.append([ [-0.59375, 0.164062, -0.125], [-0.40625, -0.148438, -0.171875] ])
model.append([ [-0.40625, -0.148438, -0.171875], [-0.234375, -0.40625, -0.351562] ])
model.append([ [-0.234375, -0.40625, -0.351562], [-0.25, -0.390625, -0.5] ])
model.append([ [-0.25, -0.390625, -0.5], [-0.289062, -0.382812, -0.710938] ])
model.append([ [-0.289062, -0.382812, -0.710938], [-0.328125, -0.398438, -0.914062] ])
model.append([ [-0.328125, -0.398438, -0.914062], [-0.164062, -0.4375, -0.945312] ])
model.append([ [-0.164062, -0.4375, -0.945312], [0, -0.460938, -0.976562] ])
# Left eye
model.append([ [-0.375, -0.742188, 0.0625], [-0.226562, -0.78125, 0.109375] ])
model.append([ [-0.226562, -0.78125, 0.109375], [-0.1875, -0.773438, 0.15625] ])
model.append([ [-0.1875, -0.773438, 0.15625], [-0.171875, -0.78125, 0.21875] ])
model.append([ [-0.171875, -0.78125, 0.21875], [-0.179688, -0.78125, 0.296875] ])
model.append([ [-0.179688, -0.78125, 0.296875], [-0.210938, -0.78125, 0.375] ])
model.append([ [-0.210938, -0.78125, 0.375], [-0.335938, -0.75, 0.40625] ])
model.append([ [-0.335938, -0.75, 0.40625], [-0.414062, -0.75, 0.390625] ])
model.append([ [-0.414062, -0.75, 0.390625], [-0.53125, -0.679688, 0.335938] ])
model.append([ [-0.53125, -0.679688, 0.335938], [-0.554688, -0.671875, 0.28125] ])
model.append([ [-0.554688, -0.671875, 0.28125], [-0.476562, -0.71875, 0.101562] ])
model.append([ [-0.476562, -0.71875, 0.101562], [-0.375, -0.742188, 0.0625] ])
# Right eye
model.append([ [0.375, -0.742188, 0.0625], [0.476562, -0.71875, 0.101562] ])
model.append([ [0.476562, -0.71875, 0.101562], [0.578125, -0.679688, 0.195312] ])
model.append([ [0.578125, -0.679688, 0.195312], [0.585938, -0.6875, 0.289062] ])
model.append([ [0.585938, -0.6875, 0.289062], [0.5625, -0.695312, 0.351562] ])
model.append([ [0.5625, -0.695312, 0.351562], [0.421875, -0.773438, 0.398438] ])
model.append([ [0.421875, -0.773438, 0.398438], [0.335938, -0.75, 0.40625] ])
model.append([ [0.335938, -0.75, 0.40625], [0.28125, -0.765625, 0.398438] ])
model.append([ [0.28125, -0.765625, 0.398438], [0.210938, -0.78125, 0.375] ])
model.append([ [0.210938, -0.78125, 0.375], [0.179688, -0.78125, 0.296875] ])
model.append([ [0.179688, -0.78125, 0.296875], [0.171875, -0.78125, 0.21875] ])
model.append([ [0.171875, -0.78125, 0.21875], [0.1875, -0.773438, 0.15625] ])
model.append([ [0.1875, -0.773438, 0.15625], [0.226562, -0.78125, 0.109375] ])
model.append([ [0.226562, -0.78125, 0.109375], [0.375, -0.742188, 0.0625] ])
for line_model in model:
start_line = vec_augment(line_model[0])
end_line = vec_augment(line_model[1])
start_line_px = project(start_line, cam_K, c_T_o_est).astype(np.int32)
end_line_px = project(end_line, cam_K, c_T_o_est).astype(np.int32)
cv.line(img, start_line_px, end_line_px, (0,0,255), 2)
cv.imwrite("/tmp/img_result.png", img)
# Mosaic
nb_data_all = nb_data + 1
center_idx = nb_data_all // 2
mosaic_root = math.ceil(math.sqrt(nb_data_all))
print(f"center_idx={center_idx} ; mosaic_root={mosaic_root}")
img0 = npz_data["image_{:04d}".format(0)]
mosaic_img = np.zeros((mosaic_root*img0.shape[0], mosaic_root*img0.shape[1], 3), dtype=np.uint8)
print(f"mosaic_img={mosaic_img.shape}")
idx_shift = 0
for idx1 in range(mosaic_root):
for idx2 in range(mosaic_root):
idx = idx1*mosaic_root + idx2 + idx_shift
if idx == center_idx:
mosaic_img[idx1*img.shape[0]:(idx1+1)*img.shape[0], idx2*img.shape[1]:(idx2+1)*img.shape[1],] = img
idx_shift = 1
idx = idx1*mosaic_root + idx2 + idx_shift
img_load = npz_data["image_{:04d}".format(idx)]
idx1_ = idx // mosaic_root
idx2_ = idx % mosaic_root
mosaic_img[idx1_*img.shape[0]:(idx1_+1)*img.shape[0], idx2_*img.shape[1]:(idx2_+1)*img.shape[1],] = img_load
elif idx < nb_data_all:
idx1_ = idx // mosaic_root
idx2_ = idx % mosaic_root
img_load = npz_data["image_{:04d}".format(idx-idx_shift)]
mosaic_img[idx1_*img.shape[0]:(idx1_+1)*img.shape[0], idx2_*img.shape[1]:(idx2_+1)*img.shape[1],] = img_load
if display_after_ransac:
for idx_inlier in range(0, len(inliers), 1):
idx = inliers[idx_inlier,0]
idx_img = img_idx[idx]
if idx_img >= center_idx:
idx_img += 1
shift_w = idx_img % mosaic_root
shift_h = idx_img // mosaic_root
pt_2d_1 = np.array(pts_2d_train[idx]).astype(np.int32)
pt_2d_1[0] += img0.shape[1]*shift_w
pt_2d_1[1] += img0.shape[0]*shift_h
cv.drawMarker(mosaic_img, pt_2d_1.astype(np.int32), (255,0,0), cv.MARKER_CROSS, 6, 1)
pt_2d_2 = np.array(pts_2d[idx]).astype(np.int32)
pt_2d_2[0] += img0.shape[1] * (center_idx % mosaic_root)
pt_2d_2[1] += img0.shape[0] * (center_idx // mosaic_root)
color = (0,255,0)
if random_colors:
color = (random.randrange(256), random.randrange(256), random.randrange(256))
cv.line(mosaic_img, pt_2d_1, pt_2d_2, color, 1)
else:
for idx in range(0, len(pts_2d_train), 1):
idx_img = img_idx[idx]
if idx_img >= center_idx:
idx_img += 1
shift_w = idx_img % mosaic_root
shift_h = idx_img // mosaic_root
pt_2d_1 = np.array(pts_2d_train[idx]).astype(np.int32)
pt_2d_1[0] += img0.shape[1]*shift_w
pt_2d_1[1] += img0.shape[0]*shift_h
cv.drawMarker(mosaic_img, pt_2d_1.astype(np.int32), (255,0,0), cv.MARKER_CROSS, 6, 1)
pt_2d_2 = np.array(pts_2d[idx]).astype(np.int32)
pt_2d_2[0] += img0.shape[1] * (center_idx % mosaic_root)
pt_2d_2[1] += img0.shape[0] * (center_idx // mosaic_root)
cv.line(mosaic_img, pt_2d_1, pt_2d_2, (0,255,0), 1)
cv.imwrite("/tmp/img_mosaic.png", mosaic_img)
print()
print(f"rvec={rvec.T}")
print(f"rvec_gt={rvec_gt.T}")
print()
print(f"rot_3x3=\n{rot_3x3}")
print(f"rot_3x3_gt=\n{c_T_o_gt[:3,:3]}")
print()
print(f"tvec={tvec.T}")
print(f"tvec_gt={tvec_gt}")
print()
print(f"c_T_o_est:\n{c_T_o_est}")
print(f"c_T_o_gt:\n{c_T_o_gt}")
|