1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
|
from __future__ import print_function
import numpy as np
from numpy import linspace
import matplotlib
from matplotlib import cm
import matplotlib.pyplot as plt
# needed to use a 3d projection with matplotlib <= 3.1
from mpl_toolkits.mplot3d import Axes3D
import argparse
import glob
print("matplotlib version:", matplotlib.__version__)
def inverse_homogeneoux_matrix(M):
"""
Perform homogeneous matrix inverse.
Parameters
----------
M : numpy matrix
The input homogeneous matrix.
Returns:
-------
numpy matrix
Inverse of M.
"""
R = M[0:3, 0:3]
T = M[0:3, 3]
M_inv = np.identity(4)
M_inv[0:3, 0:3] = R.T
M_inv[0:3, 3] = (-R.T @ T).ravel()
return M_inv
def draw_square(ax, square_size):
"""
Draw a red square of size square_size at Z=0.
Parameters
----------
ax: matplotlib axis
The Matplotlib axis.
square_size: int
The square size.
"""
X = [+square_size, +square_size, -square_size, -square_size, +square_size]
Y = [-square_size, +square_size, +square_size, -square_size, -square_size]
Z = [0, 0, 0, 0, 0]
Xs = []
Ys = []
Zs = []
for i in range(len(X)):
pt = np.matrix([X[i], Y[i], Z[i], 1])
Xs.append(pt[0, 0])
Ys.append(pt[0, 1])
Zs.append(pt[0, 2])
ax.plot3D(Xs, Ys, Zs, color='r')
def getNED(lon_, lat_, r, in_radian=False):
"""
Get the homogeneous transformation matrix corresponding to the local tangent plane transformation at the specified
longitude/latitude and radius coordinates, using the NED and ECEF conventions and a perfect sphere.
See also:
- https://en.wikipedia.org/wiki/Earth-centered,_Earth-fixed_coordinate_system
- https://en.wikipedia.org/wiki/Local_tangent_plane_coordinates
Parameters
----------
lon_: float
The longitude coordinate.
lat_: float
The latitude coordinate.
r: float
The sphere radius.
in_radian: boolean
If true coordinates are in radian, otherwise in degree.
Returns:
-------
numpy matrix
The homogeneous matrix allowing converting a 3D point expressed in the NED frame to the ECEF frame.
"""
if not in_radian:
# lambda
lon = np.radians(lon_)
# phi
lat = np.radians(lat_)
else:
lon = lon_
lat = lat_
Tdata = [ [-np.sin(lat)*np.cos(lon), -np.sin(lon), -np.cos(lat)*np.cos(lon), r*np.cos(lon)*np.cos(lat)], \
[-np.sin(lat)*np.sin(lon), np.cos(lon), -np.cos(lat)*np.sin(lon), r*np.sin(lon)*np.cos(lat)], \
[ np.cos(lat), 0, -np.sin(lat), r*np.sin(lat)], \
[ 0, 0, 0, 1] \
]
T = np.matrix(Tdata)
return T
def getENU(lon_, lat_, r, in_radian=False):
"""
Get the homogeneous transformation matrix corresponding to the local tangent plane transformation at the specified
longitude/latitude and radius coordinates, using the ENU and ECEF conventions and a perfect sphere.
See also:
- https://en.wikipedia.org/wiki/Earth-centered,_Earth-fixed_coordinate_system
- https://en.wikipedia.org/wiki/Local_tangent_plane_coordinates
Parameters
----------
lon_: float
The longitude coordinate.
lat_: float
The latitude coordinate.
r: float
The sphere radius.
in_radian: boolean
If true coordinates are in radian, otherwise in degree.
Returns:
-------
numpy matrix
The homogeneous matrix allowing converting a 3D point expressed in the ENU frame to the ECEF frame.
"""
if not in_radian:
# lambda
lon = np.radians(lon_)
# phi
lat = np.radians(lat_)
else:
lon = lon_
lat = lat_
Tdata = [ [-np.sin(lon), -np.sin(lat)*np.cos(lon), np.cos(lat)*np.cos(lon), r*np.cos(lon)*np.cos(lat)], \
[ np.cos(lon), -np.sin(lat)*np.sin(lon), np.cos(lat)*np.sin(lon), r*np.sin(lon)*np.cos(lat)], \
[ 0, np.cos(lat), np.sin(lat), r*np.sin(lat)], \
[ 0, 0, 0, 1] \
]
T = np.matrix(Tdata)
return T
def regular_on_sphere_points(num, full_sphere=False):
"""
Generate equidistributed points on the surface of a sphere.
From:
- "How to generate equidistributed points on the surface of a sphere", Markus Deserno
- https://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf
- https://gist.github.com/dinob0t/9597525
Parameters
----------
num: int
The desired number of points on the surface of a sphere.
Returns:
-------
list
The list of equidistributed points on the surface of a sphere in the lon-lat coordinates.
Note:
-------
This method does not return exactly the specified number of points.
"""
r = 1
points = []
# Break out if zero points
if num == 0:
return points
a = 4.0 * np.pi*(r**2.0 / num)
d = np.sqrt(a)
m_theta = int(round(np.pi / d))
d_theta = np.pi / m_theta
d_phi = a / d_theta
pi_2 = np.pi/2
if full_sphere:
m_upper_bound = m_theta
else:
m_upper_bound = int(m_theta/2)
for m in range(m_upper_bound):
theta = np.pi * (m + 0.5) / m_theta
m_phi = int(round(2.0 * np.pi * np.sin(theta) / d_phi))
for n in range(m_phi):
phi = 2.0 * np.pi * n / m_phi
lon = phi
lat = pi_2-theta
points.append([lon,lat])
return points
def create_camera_model(camera_matrix, width, height, scale_focal, draw_frame_axis=True):
"""
Create a camera model for Matplotlib 3D plotting.
Parameters
----------
camera_matrix: numpy matrix
The camera intrinsic parameters matrix.
width: int
The width of the camera image plane for drawing.
height: int
The height of the camera image plane for drawing.
scale_focal: float
A scale factor to draw the camera model.
draw_frame_axis: boolean
If true the camera frame is also drawn.
Returns:
-------
list
The list of 3D line points for Matplotlib 3D plotting.
"""
fx = camera_matrix[0,0]
fy = camera_matrix[1,1]
focal = 2 / (fx + fy)
f_scale = scale_focal * focal
# Draw camera image plane
X_img_plane = np.ones((4,5))
X_img_plane[0:3,0] = [-width, height, f_scale]
X_img_plane[0:3,1] = [width, height, f_scale]
X_img_plane[0:3,2] = [width, -height, f_scale]
X_img_plane[0:3,3] = [-width, -height, f_scale]
X_img_plane[0:3,4] = [-width, height, f_scale]
# Draw triangle above the camera image plane
X_triangle = np.ones((4,3))
X_triangle[0:3,0] = [-width, -height, f_scale]
X_triangle[0:3,1] = [0, -2*height, f_scale]
X_triangle[0:3,2] = [width, -height, f_scale]
# Draw camera
X_center1 = np.ones((4,2))
X_center1[0:3,0] = [0, 0, 0]
X_center1[0:3,1] = [-width, height, f_scale]
X_center2 = np.ones((4,2))
X_center2[0:3,0] = [0, 0, 0]
X_center2[0:3,1] = [width, height, f_scale]
X_center3 = np.ones((4,2))
X_center3[0:3,0] = [0, 0, 0]
X_center3[0:3,1] = [width, -height, f_scale]
X_center4 = np.ones((4,2))
X_center4[0:3,0] = [0, 0, 0]
X_center4[0:3,1] = [-width, -height, f_scale]
# Draw camera frame axis
X_frame1 = np.ones((4,2))
X_frame1[0:3,0] = [0, 0, 0]
X_frame1[0:3,1] = [f_scale/2, 0, 0]
X_frame2 = np.ones((4,2))
X_frame2[0:3,0] = [0, 0, 0]
X_frame2[0:3,1] = [0, f_scale/2, 0]
X_frame3 = np.ones((4,2))
X_frame3[0:3,0] = [0, 0, 0]
X_frame3[0:3,1] = [0, 0, f_scale/2]
if draw_frame_axis:
return [X_img_plane, X_triangle, X_center1, X_center2, X_center3, X_center4, X_frame1, X_frame2, X_frame3]
else:
return [X_img_plane, X_triangle, X_center1, X_center2, X_center3, X_center4]
def drawCameraModel(cam_model, w_T_cv, ax, color, draw_frame_axis):
"""
Draw a camera at the specified pose.
Parameters
----------
cam_model: list
The camera model for drawing.
w_T_cv: numpy matrix
The pose of the camera with respect to the global frame.
ax: Matplotlib axis object
The Matplotlib axis.
color: Matplotlib color
The color of the camera.
draw_frame_axis: boolean
If true the camera frame is also drawn.
Returns:
-------
list
The list of 3D line points for Matplotlib 3D plotting.
"""
cam_frame_colors = ['r', 'g', 'b']
for i in range(len(cam_model)):
X = np.zeros(cam_model[i].shape)
for j in range(cam_model[i].shape[1]):
X[:,j] = w_T_cv @ cam_model[i][:,j]
if draw_frame_axis and i >= len(cam_model)-3:
ax.plot3D(X[0,:], X[1,:], X[2,:], color=cam_frame_colors[i-6])
else:
ax.plot3D(X[0,:], X[1,:], X[2,:], color=color)
def axisEqual3D(ax):
"""
Try to do 3D plotting with equal X, Y and Z axes.
Parameters
----------
ax: Matplotlib axis object
The Matplotlib axis.
"""
extents = np.array([getattr(ax, 'get_{}lim'.format(dim))() for dim in 'xyz'])
sz = extents[:,1] - extents[:,0]
centers = np.mean(extents, axis=1)
maxsize = max(abs(sz))
r = maxsize/2
for ctr, dim in zip(centers, 'xyz'):
getattr(ax, 'set_{}lim'.format(dim))(ctr - r, ctr + r)
def readCamPoses(filenames):
"""
Read camera poses stored in txt files.
Parameters
----------
filenames: List
The list of camera pose filenames.
Returns:
-------
list
The list of camera pose matrices.
"""
cam_poses = []
for filename in filenames:
cam_poses.append(np.loadtxt(filename))
return cam_poses
def main():
parser = argparse.ArgumentParser(description='Plot camera poses using the NED or ENU conventions.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--min-lon', type=float, default=0,
help='Minimum longitude.')
parser.add_argument('--min-lat', type=float, default=0,
help='Minimum latitude.')
parser.add_argument('--max-lon', type=float, default=360,
help='Maximum longitude.')
parser.add_argument('--max-lat', type=float, default=90,
help='Maximum latitude.')
parser.add_argument('--nlon', type=int, default=20,
help='Number of longitude subdivisions.')
parser.add_argument('--nlat', type=int, default=10,
help='Number of latitude subdivisions.')
parser.add_argument('--radius', type=float, default=5,
help='Sphere radius.')
parser.add_argument('--cam-width', type=float, default=0.64/2,
help='Width/2 of the displayed camera.')
parser.add_argument('--cam-height', type=float, default=0.48/2,
help='Height/2 of the displayed camera.')
parser.add_argument('--scale-focal', type=float, default=0.5,
help='Value to scale the focal length.')
parser.add_argument('--cam-frame', action='store_true',
help='Display camera frames.')
parser.add_argument('--enu', action='store_true',
help='Use ENU coordinate system instead of NED.')
parser.add_argument('--full-sphere', action='store_true',
help='Use full sphere for the equidistributed mode.')
parser.add_argument('--save', action='store_true',
help='Save plotting figure.')
parser.add_argument('--dpi', type=int, default=300,
help='Image dpi when saving the png file.')
parser.add_argument('--verbose', action='store_true',
help='Print all the transformations.')
parser.add_argument('--folder', type=str, default="",
help='Folder that contains the transformations from local to ECEF frame.')
args = parser.parse_args()
verbose = args.verbose
print("Verbose?", verbose)
radius = args.radius
print("Sphere radius:", radius)
# Camera
cam_width = args.cam_width
cam_height = args.cam_height
print("Camera width:", cam_width, "Camera height:", cam_height)
draw_frame_axis = args.cam_frame
print("Display camera frames?", draw_frame_axis)
scale_focal = args.scale_focal
print("Scale focal:", scale_focal)
cam = create_camera_model(np.eye(3), cam_width, cam_height, scale_focal, draw_frame_axis)
print("Camera matrix:\n", cam)
# Transformation from CV frame to ENU frame
enu_T_cv = np.eye(4)
enu_T_cv[1,1] = -1
enu_T_cv[2,2] = -1
print("enu_T_cv:\n", enu_T_cv)
# Transformation from CV frame to NED frame
ned_T_cv = np.eye(4)
ned_T_cv[0,0] = 0
ned_T_cv[0,1] = -1
ned_T_cv[1,0] = 1
ned_T_cv[1,1] = 0
print("ned_T_cv:\n", ned_T_cv)
# Inverse homogeneous matrix demo
cv_T_ned = inverse_homogeneoux_matrix(ned_T_cv)
print(f"ned_T_cv:\n{ned_T_cv}")
print(f"cv_T_ned:\n{cv_T_ned}")
folder = args.folder
if folder:
cam_poses = readCamPoses(sorted(glob.glob(folder + "/*.txt")))
print(f"Read camera poses from: {folder} / Num cam poses: {len(cam_poses)}")
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.set_xlabel('X', fontsize=24)
ax.set_ylabel('Y', fontsize=24)
ax.set_zlabel('Z', fontsize=24)
ax.set_title('Camera poses', fontsize=26)
draw_square(ax, radius)
cm_subsection = linspace(0.0, 1.0, len(cam_poses))
colors = [cm.rainbow(x) for x in cm_subsection]
for idx, cam_pose in enumerate(cam_poses):
drawCameraModel(cam, cam_pose, ax, colors[idx], draw_frame_axis)
# Try to make equal axes on 3D plotting
axisEqual3D(ax)
plt.show()
else:
min_lon = args.min_lon
max_lon = args.max_lon
min_lat = args.min_lat
max_lat = args.max_lat
nlon = args.nlon
nlat = args.nlat
print("Minimum longitude:", min_lon, "Maximum longitude:", max_lon, "Number of longitude coordinates:", nlon)
print("Minimum latitude:", min_lat, "Maximum latitude:", max_lat, "Number of latitude coordinates:", nlat)
longitudes = np.linspace(min_lon, max_lon, nlon, endpoint=True)
latitudes = np.linspace(min_lat, max_lat, nlat, endpoint=True)
print("longitudes:\n", longitudes)
print("latitudes:\n", latitudes)
use_enu = args.enu
print("Use ENU?", use_enu)
cm_subsection = linspace(0.0, 1.0, longitudes.shape[0]*latitudes.shape[0])
colors = [cm.rainbow(x) for x in cm_subsection]
fig1 = plt.figure()
ax1 = fig1.add_subplot(projection='3d')
ax1.set_xlabel('X', fontsize=24)
ax1.set_ylabel('Y', fontsize=24)
ax1.set_zlabel('Z', fontsize=24)
ax1.set_title('Camera poses from longitude-latitude sampling', fontsize=26)
draw_square(ax1, radius)
if verbose:
print("\n=========Spherical sampling using Lon/Lat coordinates=========")
idx = 0
for lon in longitudes:
for lat in latitudes:
if use_enu:
ecef_T_enu = getENU(lon, lat, radius)
ecef_T_cv = ecef_T_enu @ enu_T_cv
drawCameraModel(cam, ecef_T_cv, ax1, colors[idx], draw_frame_axis)
if verbose:
print("\nLon-Lat ecef_T_enu:\n", ecef_T_enu)
else:
ecef_T_ned = getNED(lon, lat, radius)
ecef_T_cv = ecef_T_ned @ ned_T_cv
drawCameraModel(cam, ecef_T_cv, ax1, colors[idx], draw_frame_axis)
if verbose:
print("\nLon-Lat ecef_T_ned:\n", ecef_T_ned)
idx += 1
# Try to make equal axes on 3D plotting
axisEqual3D(ax1)
fig2 = plt.figure()
ax2 = fig2.add_subplot(projection='3d')
draw_square(ax2, radius)
npoints = longitudes.shape[0]*latitudes.shape[0]
full_sphere = args.full_sphere
regular_surf_points = regular_on_sphere_points(npoints, full_sphere)
print("Desired number of equidistributed points on the sphere:", npoints)
print("Actual number of equidistributed points on the sphere:", len(regular_surf_points))
cm_subsection = linspace(0.0, 1.0, len(regular_surf_points))
colors = [ cm.rainbow(x) for x in cm_subsection ]
if verbose:
print("\n=========Equidistributed sphere sampling=========")
for idx, point in enumerate(regular_surf_points):
lon = np.rad2deg(point[0])
lat = np.rad2deg(point[1])
if use_enu:
ecef_T_enu = getENU(lon, lat, radius)
ecef_T_cv = ecef_T_enu @ enu_T_cv
drawCameraModel(cam, ecef_T_cv, ax2, colors[idx], draw_frame_axis)
if verbose:
print("\nEquidistributed ecef_T_enu:\n", ecef_T_enu)
else:
ecef_T_ned = getNED(lon, lat, radius)
ecef_T_cv = ecef_T_ned @ ned_T_cv
drawCameraModel(cam, ecef_T_cv, ax2, colors[idx], draw_frame_axis)
if verbose:
print("\nEquidistributed ecef_T_ned:\n", ecef_T_ned)
ax2.set_xlabel('X', fontsize=24)
ax2.set_ylabel('Y', fontsize=24)
ax2.set_zlabel('Z', fontsize=24)
ax2.set_title('Camera poses from equidistributed sphere sampling', fontsize=26)
# Copy axis limits from the first figure
ax2.set_xlim(ax1.get_xlim())
ax2.set_ylim(ax1.get_ylim())
ax2.set_zlim(ax1.get_zlim())
plt.show()
if args.save:
if use_enu:
fig1.savefig('ENU.png', dpi=args.dpi, bbox_inches='tight')
fig2.savefig('ENU_Equi.png', dpi=args.dpi, bbox_inches='tight')
else:
fig1.savefig('NED.png', dpi=args.dpi, bbox_inches='tight')
fig2.savefig('NED_Equi.png', dpi=args.dpi, bbox_inches='tight')
if __name__ == '__main__':
main()
|