File: PlotRGBIrDepthData.py

package info (click to toggle)
visp 3.7.0-7
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 166,380 kB
  • sloc: cpp: 392,705; ansic: 224,448; xml: 23,444; python: 13,701; java: 4,792; sh: 206; objc: 145; makefile: 118
file content (227 lines) | stat: -rw-r--r-- 10,094 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from __future__ import print_function

import argparse
import glob
from pathlib import Path
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import proj3d
from PIL import Image

print(f"matplotlib version: {matplotlib.__version__}")

abort = False
def close_figure(event):
    plt.close(event.canvas.figure)
    if event.key == 'escape':
        global abort
        abort = True

def load_data(iter, input_color_filenames, input_infrared_filenames, input_depth_filenames, input_pcl_filenames):
    color_filename = input_color_filenames[iter]
    ir_filename = input_infrared_filenames[iter]
    depth_filename = input_depth_filenames[iter]
    pcl_filename = input_pcl_filenames[iter]

    if not Path(color_filename).is_file():
        color = np.zeros((480,640,3), dtype=np.uint8)
    else:
        color = Image.open(color_filename)

    if not Path(ir_filename).is_file():
        infrared = np.zeros((480,640,1), dtype=np.uint8)
    else:
        infrared = Image.open(ir_filename)

    if not Path(depth_filename).is_file():
        depth = np.zeros((480,640,1), dtype=np.uint8)
    else:
        with np.load(depth_filename) as data:
            height = data['height'][0]
            width = data['width'][0]
            depth_data_raw = data['data'].reshape((height, width))

            max_uint16 = 65536
            hist, bin_edges = np.histogram(depth_data_raw, bins=max_uint16, range=(0, max_uint16-1))
            # https://stackoverflow.com/a/30460089
            dx = bin_edges[1] - bin_edges[0]
            cumsum = np.cumsum(hist)*dx
            depth = np.zeros(depth_data_raw.shape, dtype=np.uint8)
            for i in range(depth_data_raw.shape[0]):
                for j in range(depth_data_raw.shape[1]):
                    try:
                        depth_value = depth_data_raw[i,j]
                        if depth_value > 0:
                            depth[i,j] = np.uint8(cumsum[depth_value] * 255.0 / cumsum[-1])
                    except:
                        raise

    if not Path(pcl_filename).is_file():
        pointcloud = np.zeros((480,640,3), dtype=np.float)
    else:
        with np.load(pcl_filename) as data:
            height = data['height'][0]
            width = data['width'][0]
            channel = data['channel'][0]
            pointcloud = data['data']
            assert(len(pointcloud.shape) == 3)
            assert(pointcloud.shape[0] == height)
            assert(pointcloud.shape[1] == width)
            assert(pointcloud.shape[2] == channel)

    return color, infrared, depth, pointcloud

def main():
    parser = argparse.ArgumentParser(description='Plot color/IR/depth (in npz fileformat) data stored with visp-save-rs-dataset.cpp file.',
                                     formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('-i', '--input', type=str, default="",
                        help='Input data folder.')
    parser.add_argument('--color-pattern', type=str, default="color_image_*.png",
                        help='Filename pattern for the color images.')
    parser.add_argument('--infrared-pattern', type=str, default="infrared_image_*.png",
                        help='Filename pattern for the infrared images.')
    parser.add_argument('--depth-pattern', type=str, default="depth_image_*.npz",
                        help='Filename pattern for the depth images.')
    parser.add_argument('--pcl-pattern', type=str, default="point_cloud_*.npz",
                        help='Filename pattern for the pointcloud data.')
    parser.add_argument('--pcl-subsample', type=int, default=10,
                        help='Pointcloud subsampling.')
    args = parser.parse_args()

    input_folder = Path(args.input)
    color_pattern = Path(input_folder) / args.color_pattern
    infrared_pattern = Path(input_folder) / args.infrared_pattern
    depth_pattern = Path(input_folder) / args.depth_pattern
    pcl_pattern = Path(input_folder) / args.pcl_pattern
    pcl_subsample = args.pcl_subsample
    print(f"Input folder: {input_folder}")
    print(f"Color filename pattern: {color_pattern}")
    print(f"Infrared filename pattern: {infrared_pattern}")
    print(f"Depth filename pattern: {depth_pattern}")
    print(f"Pointcloud filename pattern: {pcl_pattern}")
    print(f"Pointcloud subsampling: {pcl_subsample}")

    if not input_folder.is_dir():
        print(f"Invalid folder: {input_folder}")
        return

    input_color_filenames = sorted(glob.glob(str(color_pattern)))
    input_infrared_filenames = sorted(glob.glob(str(infrared_pattern)))
    input_depth_filenames = sorted(glob.glob(str(depth_pattern)))
    input_pcl_filenames = sorted(glob.glob(str(pcl_pattern)))

    max_data = max(len(input_color_filenames), len(input_infrared_filenames), len(input_depth_filenames), len(input_pcl_filenames))
    if max_data == 0:
        raise ValueError('Input data are empty.')

    max_value = 1e9
    nb_color = max_value if len(input_color_filenames) == 0 else len(input_color_filenames)
    nb_infrared = max_value if len(input_infrared_filenames) == 0 else len(input_infrared_filenames)
    nb_depth = max_value if len(input_depth_filenames) == 0 else len(input_depth_filenames)
    nb_pcl = max_value if len(input_pcl_filenames) == 0 else len(input_pcl_filenames)
    max_data = min(nb_color, nb_infrared, nb_depth, nb_pcl)

    # Truncate data if needed
    print(f"Nb color: {len(input_color_filenames)} ; IR: {len(input_infrared_filenames)} ;\
          depth: {len(input_depth_filenames)} ; PCL: {len(input_pcl_filenames)} ; Truncate data to: {max_data}")
    input_color_filenames = [""] * max_data if len(input_color_filenames) == 0 else input_color_filenames[:max_data]
    input_infrared_filenames = [""] * max_data if len(input_infrared_filenames) == 0 else input_infrared_filenames[:max_data]
    input_depth_filenames = [""] * max_data if len(input_depth_filenames) == 0 else input_depth_filenames[:max_data]
    input_pcl_filenames = [""] * max_data if len(input_pcl_filenames) == 0 else input_pcl_filenames[:max_data]

    color_vec = []
    ir_vec = []
    depth_vec = []
    pcl_vec = []

    color_data, ir_data, depth_data, pcl_data = load_data(0, input_color_filenames, input_infrared_filenames, input_depth_filenames, input_pcl_filenames)
    color_vec.append(color_data)
    ir_vec.append(ir_data)
    depth_vec.append(depth_data)
    pcl_vec.append(pcl_data)

    # https://matplotlib.org/stable/gallery/mplot3d/mixed_subplots.html
    # https://matplotlib.org/stable/gallery/mplot3d/subplot3d.html
    fig = plt.figure()
    title = fig.suptitle('RGB + IR + Depth + PCL ({}/{})'.format(1, max_data), fontsize=30)
    ax00 = fig.add_subplot(2, 2, 1)
    ax01 = fig.add_subplot(2, 2, 2)
    ax10 = fig.add_subplot(2, 2, 3)
    ax11 = fig.add_subplot(2, 2, 4, projection='3d')
    im0 = ax00.imshow(color_vec[0])
    im1 = ax01.imshow(ir_vec[0], cmap='gray')
    im2 = ax10.imshow(depth_vec[0])
    im3 = ax11.scatter(pcl_vec[0][::pcl_subsample,::pcl_subsample,0],
                       pcl_vec[0][::pcl_subsample,::pcl_subsample,1],
                       pcl_vec[0][::pcl_subsample,::pcl_subsample,2])

    def init():
        im0.set_array(color_vec[0])
        im1.set_array(ir_vec[0])
        im2.set_array(depth_vec[0])
        subsample = pcl_vec[0][::pcl_subsample,::pcl_subsample,:2]
        # https://stackoverflow.com/a/9416663
        im3.set_offsets(subsample.reshape(-1,2))
        im3.set_array(pcl_vec[0][::pcl_subsample,::pcl_subsample,2].flatten())

    # https://stackoverflow.com/a/57259405
    def update_func(frame):
        if frame >= len(color_vec):
            color_data, ir_data, depth_data, pcl_data = load_data(frame, input_color_filenames,
                                                                  input_infrared_filenames, input_depth_filenames,
                                                                  input_pcl_filenames)
            color_vec.append(color_data)
            ir_vec.append(ir_data)
            depth_vec.append(depth_data)
            pcl_vec.append(pcl_data)

        im0.set_array(color_vec[frame])
        im1.set_array(ir_vec[frame])
        im2.set_array(depth_vec[frame])
        # Did not found a way to simultaneously update scatter data and the axis limits
        # So here we clear and replot the data
        subsample_xy = pcl_vec[frame][::pcl_subsample,::pcl_subsample,:2].reshape(-1,2)
        subsample_z = pcl_vec[frame][::pcl_subsample,::pcl_subsample,2].flatten()
        ax11.clear()
        im3 = ax11.scatter(subsample_xy[:,0],
                           subsample_xy[:,1],
                           subsample_z)
        ax11.set_xlabel('X')
        ax11.set_ylabel('Y')
        ax11.set_zlabel('Z')
        # # This does not work
        # ax11.clear()
        # # https://stackoverflow.com/a/27741495
        # corners = (min(subsample_xy[:,0]), min(subsample_xy[:,1]), min(subsample_z)), \
        #           (max(subsample_xy[:,0]), max(subsample_xy[:,1]), max(subsample_z))
        # print(f"corners={corners}")
        # ax11.update_datalim(corners)
        # ax11.margins(0.05, 0.05, 0.05)
        # ax11.autoscale_view()
        # im3.set_offsets(subsample_xy)
        # im3.set_array(subsample_z)
        # ax11.add_collection(im3)

        title.set_text('RGB + IR + Depth + PCL ({}/{})'.format(frame+1, max_data))

    # https://matplotlib.org/stable/api/animation_api.html
    anim = animation.FuncAnimation(
                                    fig,
                                    update_func,
                                    frames = np.arange(len(input_color_filenames)),
                                    interval = 33, # in ms
                                    init_func = init
                                    )

    plt.gcf().canvas.mpl_connect('key_press_event', close_figure)
    plt.show(block=False)
    plt.pause(0.033)

    if abort:
        return

if __name__ == '__main__':
    main()