1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
from __future__ import print_function
import argparse
import glob
from pathlib import Path
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import proj3d
from PIL import Image
print(f"matplotlib version: {matplotlib.__version__}")
abort = False
def close_figure(event):
plt.close(event.canvas.figure)
if event.key == 'escape':
global abort
abort = True
def load_data(iter, input_color_filenames, input_infrared_filenames, input_depth_filenames, input_pcl_filenames):
color_filename = input_color_filenames[iter]
ir_filename = input_infrared_filenames[iter]
depth_filename = input_depth_filenames[iter]
pcl_filename = input_pcl_filenames[iter]
if not Path(color_filename).is_file():
color = np.zeros((480,640,3), dtype=np.uint8)
else:
color = Image.open(color_filename)
if not Path(ir_filename).is_file():
infrared = np.zeros((480,640,1), dtype=np.uint8)
else:
infrared = Image.open(ir_filename)
if not Path(depth_filename).is_file():
depth = np.zeros((480,640,1), dtype=np.uint8)
else:
with np.load(depth_filename) as data:
height = data['height'][0]
width = data['width'][0]
depth_data_raw = data['data'].reshape((height, width))
max_uint16 = 65536
hist, bin_edges = np.histogram(depth_data_raw, bins=max_uint16, range=(0, max_uint16-1))
# https://stackoverflow.com/a/30460089
dx = bin_edges[1] - bin_edges[0]
cumsum = np.cumsum(hist)*dx
depth = np.zeros(depth_data_raw.shape, dtype=np.uint8)
for i in range(depth_data_raw.shape[0]):
for j in range(depth_data_raw.shape[1]):
try:
depth_value = depth_data_raw[i,j]
if depth_value > 0:
depth[i,j] = np.uint8(cumsum[depth_value] * 255.0 / cumsum[-1])
except:
raise
if not Path(pcl_filename).is_file():
pointcloud = np.zeros((480,640,3), dtype=np.float)
else:
with np.load(pcl_filename) as data:
height = data['height'][0]
width = data['width'][0]
channel = data['channel'][0]
pointcloud = data['data']
assert(len(pointcloud.shape) == 3)
assert(pointcloud.shape[0] == height)
assert(pointcloud.shape[1] == width)
assert(pointcloud.shape[2] == channel)
return color, infrared, depth, pointcloud
def main():
parser = argparse.ArgumentParser(description='Plot color/IR/depth (in npz fileformat) data stored with visp-save-rs-dataset.cpp file.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-i', '--input', type=str, default="",
help='Input data folder.')
parser.add_argument('--color-pattern', type=str, default="color_image_*.png",
help='Filename pattern for the color images.')
parser.add_argument('--infrared-pattern', type=str, default="infrared_image_*.png",
help='Filename pattern for the infrared images.')
parser.add_argument('--depth-pattern', type=str, default="depth_image_*.npz",
help='Filename pattern for the depth images.')
parser.add_argument('--pcl-pattern', type=str, default="point_cloud_*.npz",
help='Filename pattern for the pointcloud data.')
parser.add_argument('--pcl-subsample', type=int, default=10,
help='Pointcloud subsampling.')
args = parser.parse_args()
input_folder = Path(args.input)
color_pattern = Path(input_folder) / args.color_pattern
infrared_pattern = Path(input_folder) / args.infrared_pattern
depth_pattern = Path(input_folder) / args.depth_pattern
pcl_pattern = Path(input_folder) / args.pcl_pattern
pcl_subsample = args.pcl_subsample
print(f"Input folder: {input_folder}")
print(f"Color filename pattern: {color_pattern}")
print(f"Infrared filename pattern: {infrared_pattern}")
print(f"Depth filename pattern: {depth_pattern}")
print(f"Pointcloud filename pattern: {pcl_pattern}")
print(f"Pointcloud subsampling: {pcl_subsample}")
if not input_folder.is_dir():
print(f"Invalid folder: {input_folder}")
return
input_color_filenames = sorted(glob.glob(str(color_pattern)))
input_infrared_filenames = sorted(glob.glob(str(infrared_pattern)))
input_depth_filenames = sorted(glob.glob(str(depth_pattern)))
input_pcl_filenames = sorted(glob.glob(str(pcl_pattern)))
max_data = max(len(input_color_filenames), len(input_infrared_filenames), len(input_depth_filenames), len(input_pcl_filenames))
if max_data == 0:
raise ValueError('Input data are empty.')
max_value = 1e9
nb_color = max_value if len(input_color_filenames) == 0 else len(input_color_filenames)
nb_infrared = max_value if len(input_infrared_filenames) == 0 else len(input_infrared_filenames)
nb_depth = max_value if len(input_depth_filenames) == 0 else len(input_depth_filenames)
nb_pcl = max_value if len(input_pcl_filenames) == 0 else len(input_pcl_filenames)
max_data = min(nb_color, nb_infrared, nb_depth, nb_pcl)
# Truncate data if needed
print(f"Nb color: {len(input_color_filenames)} ; IR: {len(input_infrared_filenames)} ;\
depth: {len(input_depth_filenames)} ; PCL: {len(input_pcl_filenames)} ; Truncate data to: {max_data}")
input_color_filenames = [""] * max_data if len(input_color_filenames) == 0 else input_color_filenames[:max_data]
input_infrared_filenames = [""] * max_data if len(input_infrared_filenames) == 0 else input_infrared_filenames[:max_data]
input_depth_filenames = [""] * max_data if len(input_depth_filenames) == 0 else input_depth_filenames[:max_data]
input_pcl_filenames = [""] * max_data if len(input_pcl_filenames) == 0 else input_pcl_filenames[:max_data]
color_vec = []
ir_vec = []
depth_vec = []
pcl_vec = []
color_data, ir_data, depth_data, pcl_data = load_data(0, input_color_filenames, input_infrared_filenames, input_depth_filenames, input_pcl_filenames)
color_vec.append(color_data)
ir_vec.append(ir_data)
depth_vec.append(depth_data)
pcl_vec.append(pcl_data)
# https://matplotlib.org/stable/gallery/mplot3d/mixed_subplots.html
# https://matplotlib.org/stable/gallery/mplot3d/subplot3d.html
fig = plt.figure()
title = fig.suptitle('RGB + IR + Depth + PCL ({}/{})'.format(1, max_data), fontsize=30)
ax00 = fig.add_subplot(2, 2, 1)
ax01 = fig.add_subplot(2, 2, 2)
ax10 = fig.add_subplot(2, 2, 3)
ax11 = fig.add_subplot(2, 2, 4, projection='3d')
im0 = ax00.imshow(color_vec[0])
im1 = ax01.imshow(ir_vec[0], cmap='gray')
im2 = ax10.imshow(depth_vec[0])
im3 = ax11.scatter(pcl_vec[0][::pcl_subsample,::pcl_subsample,0],
pcl_vec[0][::pcl_subsample,::pcl_subsample,1],
pcl_vec[0][::pcl_subsample,::pcl_subsample,2])
def init():
im0.set_array(color_vec[0])
im1.set_array(ir_vec[0])
im2.set_array(depth_vec[0])
subsample = pcl_vec[0][::pcl_subsample,::pcl_subsample,:2]
# https://stackoverflow.com/a/9416663
im3.set_offsets(subsample.reshape(-1,2))
im3.set_array(pcl_vec[0][::pcl_subsample,::pcl_subsample,2].flatten())
# https://stackoverflow.com/a/57259405
def update_func(frame):
if frame >= len(color_vec):
color_data, ir_data, depth_data, pcl_data = load_data(frame, input_color_filenames,
input_infrared_filenames, input_depth_filenames,
input_pcl_filenames)
color_vec.append(color_data)
ir_vec.append(ir_data)
depth_vec.append(depth_data)
pcl_vec.append(pcl_data)
im0.set_array(color_vec[frame])
im1.set_array(ir_vec[frame])
im2.set_array(depth_vec[frame])
# Did not found a way to simultaneously update scatter data and the axis limits
# So here we clear and replot the data
subsample_xy = pcl_vec[frame][::pcl_subsample,::pcl_subsample,:2].reshape(-1,2)
subsample_z = pcl_vec[frame][::pcl_subsample,::pcl_subsample,2].flatten()
ax11.clear()
im3 = ax11.scatter(subsample_xy[:,0],
subsample_xy[:,1],
subsample_z)
ax11.set_xlabel('X')
ax11.set_ylabel('Y')
ax11.set_zlabel('Z')
# # This does not work
# ax11.clear()
# # https://stackoverflow.com/a/27741495
# corners = (min(subsample_xy[:,0]), min(subsample_xy[:,1]), min(subsample_z)), \
# (max(subsample_xy[:,0]), max(subsample_xy[:,1]), max(subsample_z))
# print(f"corners={corners}")
# ax11.update_datalim(corners)
# ax11.margins(0.05, 0.05, 0.05)
# ax11.autoscale_view()
# im3.set_offsets(subsample_xy)
# im3.set_array(subsample_z)
# ax11.add_collection(im3)
title.set_text('RGB + IR + Depth + PCL ({}/{})'.format(frame+1, max_data))
# https://matplotlib.org/stable/api/animation_api.html
anim = animation.FuncAnimation(
fig,
update_func,
frames = np.arange(len(input_color_filenames)),
interval = 33, # in ms
init_func = init
)
plt.gcf().canvas.mpl_connect('key_press_event', close_figure)
plt.show(block=False)
plt.pause(0.033)
if abort:
return
if __name__ == '__main__':
main()
|