1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
# Useful scripts
This folder contains scripts that may help ViSP user and developer.
## PerfCompare.py
Python script useful to compare benchmark performances before and after a potential source code modification/optimization or to compare performances using different third-party libraries.
For example in `$VISP_WS/visp-build/module/core` let us consider the `perfMatrixMultiplication` binary.
Depending on your python installation you may install support for enumerations:
```console
$ pip install enum
```
This script works like this:
- run first the performance binary activating benchmark and xml output options:
```console
$ cd $VISP_WS/visp-build/module/core
$ ./perfMatrixMultiplication --benchmark --reporter xml --out /tmp/log_perfMatrixMultiplication_MKL.xml
$ ./perfMatrixMultiplication --benchmark --reporter xml --out /tmp/log_perfMatrixMultiplication_OpenBLAS.xml
```
- Use the script to compare performances:
```console
$ cd $VISP_WS/visp/script
$ python PerfCompare.py --before /tmp/log_perfMatrixMultiplication_OpenBLAS.xml \
--after /tmp/log_perfMatrixMultiplication_MKL.xml \
--before-label OpenBLAS --after-label MKL
```
## create_module.py
This script allows to create the structure of a new ViSP module as explained in this [tutorial](https://visp-doc.inria.fr/doxygen/visp-daily/tutorial-contrib-module.html).
## format-coding-style.sh
This script uses `clang-format` to format ViSP source code. It should be used carefully since a lot of file could be affected.
- To install `clang-format`:
- On Ubuntu like OS:
```console
$ sudo apt-get install clang-format
```
- On OSX:
```console
$ brew install clang-format
```
- To run this script:
```console
$ cd $VISP_WS/visp/script
$ sh format-coding-style.sh
```
- To format a single file with extension `*.h` or `*.cpp`, you may rather run:
```console
$ cd $VISP_WS/visp
$ clang-format -i <path to file.[h,cpp]>
```
## make-coverage-report.sh
Script that runs the same coverage pipeline as the GitHub CI and generates an HTML report in the build folder. This makes it easier to have an up to date coverage when writing tests locally.
The script is working for Ubuntu and needs `lcov` tool.
- To install `lcov` on Ubuntu like OS:
```console
$ sudo apt-get install lcov gcovr
```
- To run the script
```console
$ cd $VISP_WS
$ git clone https://github.com/lagadic/visp
$ ./visp/script/make-coverage-report.sh visp-build
```
- Results are available in `visp-build/coverage/index.html`.
## LonLatCamPosesVisualizer.py
This Python script allows displaying camera poses sampled from longitude / latitude coordinates and using a method for regularly sampled points on a sphere.
Example (use the help option `-h` to display the available parameters):
```console
python3 LonLatCamPosesVisualizer.py --full-sphere
```
Following image shows camera poses equidistributed sampled on a sphere:

## Blender/look_at.py
This Python script can be used in a Blender scene and contains example code for:
- camera look-at function, to automatically point the camera toward a specific object,
- retrieving the camera pose with respect to another Blender object,
- and save camera images in a `/tmp/` directory.
To test this script:
- on Ubuntu/Linux launch Blender from a Terminal and use the default scene,
- switch to the [Text Editor](https://docs.blender.org/manual/en/dev/editors/text_editor.html) and open the Python script,
- when running the script, you should see the corresponding camera poses outputed on the terminal.
## PlotCameraTrajectory.py
This Python script allows displaying camera poses along with the object of interest.
Camera poses can be saved in `4x4` homogeneous matrix form or in `1x6` pose vector form (`[tx, ty, tz, tux, tuy, tuz]`).
C++ example code using the `4x4` homogeneous matrix format:
```cpp
std::ofstream file_pose("poses.txt", std::ios_base::app);
if (file_pose.is_open()) {
for (unsigned int i = 0; i < 4; i++) {
for (unsigned int j = 0; j < 4; j++) {
file_pose << c1Mo[i][j] << " ";
}
file_pose << std::endl;
}
}
```
Camera poses can also be read from npz file format:
- pass the `--npz` flag to indicate the input pose file is stored in npz file format
- the script will read data from `vec_poses` array name
- array should contains `{tx, ty, tz, tu.x, tu.y, tu.z}` information (`nb_poses x 6`)
Script example (use the help option `-h` to display the available parameters):
```console
python3 PlotCameraTrajectory.py -p poses.txt -m cube_and_cylinder.cao --azim -118 --elev 48 --x-lim -0.384455412421155 0.336083836255455 --y-lim -0.595371140756035 0.12516810792057498 --z-lim -0.12739950848021997 0.59313974019639 --num-cam 4 --save --save-pattern 'image_{:04d}.png' --frame-size 0.1
```
Following video shows the camera poses outputed by the ViSP model-based tracker when tracking the cube+cylinder object model:
[](https://user-images.githubusercontent.com/8035162/180662750-02fccaff-74bd-411c-8258-06910edc6fde.mp4 "Cube+cylinder tracking using ViSP MBT")
- Full tracking pipeline using teabox example:
1. Save teabox poses in npz format
```console
% cd $VISP_WS/visp-build/tutorial/tracking/model-based/generic
% ./tutorial-mb-generic-tracker-full \
--video model/teabox/teabox.mp4 \
--model model/teabox/teabox.cao \
--tracker 2 \
--save-results teabox_tracking_results.npz
```
2. Visualize camera trajectories
```console
% cd $VISP_WS/visp/script
% python3 -m venv venv
% source venv/bin/activate
% python3 -m pip install matplotlib
% python3 PlotCameraTrajectory.py \
-p ../../visp-build/tutorial/tracking/model-based/generic/teabox_tracking_results.npz \
--npz \
-m ../../visp-build/tutorial/tracking/model-based/generic/model/teabox/teabox.cao
```
- Full tracking pipeline using cube example:
1. Save cube poses in npz format
```console
% cd $VISP_WS/visp-build/tutorial/tracking/model-based/generic
% ./tutorial-mb-generic-tracker-full \
--video $VISP_WS/visp-images/mbt/cube/image%04d.png \
--model $VISP_WS/visp-images/mbt/cube.cao \
--tracker 2 \
--save-results cube_tracking_results.npz
```
2. Visualize camera trajectories
```console
% cd $VISP_WS/visp/script
% python3 -m venv venv
% source venv/bin/activate
% python3 -m pip install matplotlib
% python3 PlotCameraTrajectory.py \
-p ../../visp-build/tutorial/tracking/model-based/generic/cube_tracking_results.npz \
--npz \
-m $VISP_WS/visp-images/mbt/cube.cao
```
- Full tracking pipeline using cube & cylinder example:
1. Save cube & cylinder poses in npz format
```console
% cd $VISP_WS/visp-build/tutorial/tracking/model-based/generic
% ./tutorial-mb-generic-tracker-full \
--video $VISP_WS/visp-images/mbt/cube/image%04d.png \
--model $VISP_WS/visp-images/mbt/cube_and_cylinder.cao \
--tracker 2 \
--save-results cube_and_cylinder_tracking_results.npz
```
2. Visualize camera trajectories
```console
% cd $VISP_WS/visp/script
% python3 -m venv venv
% source venv/bin/activate
% python3 -m pip install matplotlib
% python3 PlotCameraTrajectory.py \
-p ../../visp-build/tutorial/tracking/model-based/generic/cube_and_cylinder_tracking_results.npz \
--npz \
-m $VISP_WS/visp-images/mbt/cube_and_cylinder.cao
```
## PlotRGBIrDepthData.py
This Python script allows displaying RGB/Infrared/Depth/Pointcloud data saved using the
`apps/rs-dataset/visp-save-rs-dataset.cpp` app.
It contains sample code to learn how to manipulate NumPy NPZ format, such as multi-dimensional array and display them with Matplotlib.
Simply run the following command with the correct folder path:
```console
python3 PlotRGBIrDepthData.py -i <folder>
```
|