1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
|
import blenderproc as bproc
'''
Script to generate a synthetic dataset, stored in hdf5 format.
This dataset can contain:
- RGB images
- Object poses
- Segmentation maps
- Bounding boxes
- Depth map
- Normal map
To run, blenderproc and other things should be installed (virtual environment recommended):
$ conda activate dataset_generation
$ pip install blenderproc numpy
$ blenderproc quickstart # verify that it works, install minor dependencies
'''
import os
import numpy as np
import argparse
import json
from operator import itemgetter
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import time
from blenderproc.python.types import MeshObjectUtility, EntityUtility
from blenderproc.python.renderer import RendererUtility
import bpy
def bounding_box_2d_from_vertices(object: bproc.types.MeshObject, K: np.ndarray, camTworld: np.ndarray) -> Tuple[List[float], float, np.ndarray]:
'''
Compute the 2D bounding from an object's vertices
returns A tuple containing:
[xmin, ymin, xmax, ymax] in pixels
the proportion of visible vertices (that are not behind the camera, i.e., negative Z)
The 2D points, in normalized units in camera space, in ViSP/OpenCV frame
'''
worldTobj = homogeneous_no_scaling(object)
obj = object.blender_obj
verts = np.ones(len(obj.data.vertices) * 3)
obj.data.vertices.foreach_get("co", verts)
points = verts.reshape(-1, 3)
# verts = [v.co for v in obj.data.vertices]
camTobj = camTworld @ worldTobj
points_cam = camTobj @ np.concatenate((points, np.ones((len(points), 1))), axis=-1).T
points_cam = convert_points_to_visp_frame((points_cam[:3] / points_cam[3, None]).T)
visible_points = points_cam[points_cam[:, 2] > 0]
visible_points_m_2d = visible_points[:, :2] / visible_points[:, 2, None]
visible_points_px_2d = K @ np.concatenate((visible_points_m_2d, np.ones((len(visible_points_m_2d), 1))), axis=-1).T
visible_points_px_2d = visible_points_px_2d.T[:, :2] / visible_points_px_2d.T[:, 2, None]
mins = np.min(visible_points_px_2d, axis=0)
assert len(mins) == 2
maxes = np.max(visible_points_px_2d, axis=0)
return [mins[0], mins[1], maxes[0], maxes[1]], len(visible_points) / len(points_cam), visible_points_m_2d
def homogeneous_inverse(aTb):
'''
Inverse of a 4x4 homogeneous transformation matrix
'''
bTa = aTb.copy()
bTa[:3, :3] = bTa[:3, :3].T
bTa[:3, 3] = -bTa[:3, :3] @ bTa[:3, 3]
return bTa
def homogeneous_no_scaling(object: bproc.types.MeshObject, frame=None):
'''
Get the homogeneous transformation of an object, but without potential scaling
object.local2world() may contain scaling factors.
'''
localTworld = np.eye(4)
localTworld[:3, :3] = object.get_rotation_mat(frame)
localTworld[:3, 3] = object.get_location(frame)
return localTworld
def convert_to_visp_frame(aTb):
'''
Blender uses a frame that is different to ViSP's.
Blender: +X = Right, +Y = Up, +Z = Behind
Same as converting to an OpenCV frame
'''
aTbbis = aTb.copy()
aTbbis[1:3] = -aTbbis[1:3]
return aTbbis
def convert_points_to_visp_frame(points: np.ndarray):
'''
Convert a set of points to ViSP coordinate frame
'''
points = points.copy()
points[:, 1:3] = -points[:, 1:3]
return points
def point_in_bounding_box(object: bproc.types.MeshObject, bb_scale=1.0):
'''
Sample a random point in the AXIS-ALIGNED bounding box of an object.
the bounding box can be scaled with bb_scale if we wish to sample a point "near" the true bounding box
Returned coordinates are in world frame
'''
bb = object.get_bound_box() * bb_scale # 8 x 3
worldTlocal = homogeneous_no_scaling(object) # local2world includes scaling
localTworld = homogeneous_inverse(worldTlocal)
# go to object space to sample with axis aligned bb, since sampling in world space would be harder
bb_local = localTworld @ np.concatenate((bb, np.ones((8, 1))), axis=-1).T
bb_local = bb_local.T[:, :3] # 8 X 3
mins, maxes = np.min(bb_local, axis=0), np.max(bb_local, axis=0)
point_local = np.zeros(3)
for i in range(3):
point_local[i] = np.random.uniform(mins[i], maxes[i])
point = worldTlocal @ np.concatenate((point_local, np.ones(1)))[:, None]
point = point[:3, 0]
return point
def object_bb_length(object: bproc.types.MeshObject) -> float:
size = 0.0
bb = object.get_bound_box()
for corner_index in range(len(bb) - 1):
dists = np.linalg.norm(bb[corner_index+1:] - bb[corner_index], axis=-1, ord=2)
size = max(np.max(dists), size)
return size
def randomize_pbr(objects: List[bproc.types.MeshObject], noise):
'''
Randomize the physical properties of objects.
Objects should have the Principled BSDF for changes to be applied.
'''
# set shading and physics properties and randomize PBR materials
for j, obj in enumerate(objects):
# rand_angle = np.random.uniform(30, 90)
# obj.set_shading_mode('auto', rand_angle)
for mat in obj.get_materials():
keys = ["Roughness", "Specular", "Metallic"]
for k in keys:
base_value = mat.get_principled_shader_value(k)
new_value = None
if isinstance(base_value, bpy.types.NodeSocketColor):
new_value = base_value.default_value + np.concatenate((np.random.uniform(-noise, noise, size=3), [1.0]))
#base_value.default_value = new_value
new_value = base_value
elif isinstance(base_value, float):
new_value = max(0.0, min(1.0, base_value + np.random.uniform(-noise, noise)))
if new_value is not None:
mat.set_principled_shader_value(k, new_value)
def add_displacement(objects: List[bproc.types.MeshObject], max_displacement_strength=0.05):
for obj in objects:
obj.add_uv_mapping("cylinder")
# Create a random procedural texture
noise_models = ["CLOUDS", "DISTORTED_NOISE", "MAGIC", "MARBLE",
"MUSGRAVE", "NOISE", "STUCCI", "VORONOI", "WOOD"]
texture = bproc.material.create_procedural_texture(noise_models[np.random.choice(len(noise_models))])
# Displace the vertices of the object based on that random texture
obj.add_displace_modifier(
texture=texture,
strength=np.random.uniform(0, max_displacement_strength),
subdiv_level=1,
)
class Scene:
def __init__(self, size: float, target_objects: List[bproc.types.MeshObject],
distractors: List[bproc.types.MeshObject], room_objects: List[bproc.types.MeshObject], lights: List[bproc.types.MeshObject]):
self.size = size
self.target_objects = target_objects
self.distractors = distractors
self.room_objects = room_objects
self.lights = lights
def cleanup(self):
objects = self.target_objects + self.distractors + self.room_objects
for object in objects:
object.delete(True)
for light in self.lights:
light.delete(True)
class Generator:
def __init__(self, config_path: Path, scene_index: int, scene_count: int):
self.config_path = config_path
with open(self.config_path, 'r') as json_config_file:
self.json_config = json.load(json_config_file)
print(self.json_config)
np.random.seed(self.json_config['numpy_seed'] * (scene_index + 1))
self.scene_index = scene_index
self.scene_count = scene_count
blender_seed_int = int(self.json_config['blenderproc_seed'])
os.environ['BLENDER_PROC_RANDOM_SEED'] = str(blender_seed_int * (scene_index + 1))
self.objects = None
self.classes = None
def init(self):
'''
Initialize the scene generation.
Load the target objects and the materials.
Setup the rendering
'''
print('Loading objects...')
if self.objects is not None:
for k in self.objects:
self.objects[k].delete()
self.objects, self.classes = self.load_objects()
self.save_class_file()
print('Preloading CC0 textures...')
self.cc_textures = bproc.loader.load_ccmaterials(self.json_config['cc_textures_path'])
self.cc_textures = np.random.choice(self.cc_textures, size=self.json_config['scene']['max_num_textures'])
self.setup_renderer()
def load_objects(self) -> Tuple[Dict[str, bproc.types.MeshObject], Dict[str, int]]:
'''
Load the objects in the models directory
The directory should have the following structure:
- models/
--- obj_1_name/
----- model.obj
--- obj_2_name/
----- model.obj
Returns
- a dict where keys are the model names
(from the containing folder name of each object,
in the example case: 'obj_1_name' and 'obj_2_name')
and the values are the loaded model
- A dict where keys are model names and values are the class indices (from 1 to N for N objects)
'''
models_dict = {}
class_dict = {}
models_path = Path(self.json_config['models_path']).absolute()
cls = 1
assert models_path.exists() and models_path.is_dir(), f'Models path {models_path} must exist and be a directory'
for model_dir in sorted(models_path.iterdir()):
if not model_dir.is_dir():
continue
model_name = model_dir.name
for content in sorted(model_dir.iterdir()):
if not content.is_file():
continue
load_fn: Callable[[str], List[bproc.types.MeshObject]] = None
if content.name.endswith('.obj') or content.name.endswith('.ply'):
load_fn = bproc.loader.load_obj
if load_fn is not None:
assert model_name not in models_dict, f'A folder should contain a single object, but {content} contains multiple objects (.blend or .obj)'
models = load_fn(str(content.absolute()))
assert len(models) > 0, f'Loaded an empty file: {content}'
model = models[0]
if len(models) > 1:
model.join_with_other_objects(models[1:])
model.set_cp('category_id', cls)
model.set_location([-1000.0, -1000.0, -1000.0]) # Avoid warning about collisions with other objects in the scene
model.hide() # Hide by default
model.set_name(model_name)
models_dict[model_name] = model
class_dict[model_name] = cls
cls += 1
return models_dict, class_dict
def save_class_file(self):
'''
Save the class for the dataset.
Write the classes to a text file.
Each line contain
This method only changes something if the class file does not exist or the generated scene is the first one.
'''
save_path = Path(self.json_config['dataset']['save_path']).absolute()
cls_file = save_path / 'classes.txt'
if self.scene_index == 0 or not cls_file.exists():
with open(cls_file, 'w') as f:
cls_to_model_name = {self.classes[k]: k for k in self.classes.keys()}
cls_indices = sorted(cls_to_model_name.keys())
lines = []
for i in cls_indices:
lines.append(cls_to_model_name[i] + '\n')
print(f'Writing classes to file: \n {lines}')
f.writelines(lines)
def setup_renderer(self):
depth = itemgetter('depth')(self.json_config['dataset'])
bproc.renderer.set_max_amount_of_samples(self.json_config['rendering']['max_num_samples'])
RendererUtility.set_denoiser(self.json_config['rendering']['denoiser'])
if depth:
bproc.renderer.enable_depth_output(activate_antialiasing=False)
def render(self) -> Dict:
'''
Call blender to render the frames.
Camera poses should already be sampled, and the scene created.
This returns a dictionary where each key (e.g "colors" for RGB rendering) contains a list of numpy arrays (1 numpy array per frame)
'''
normals, segmentation = itemgetter('normals', 'segmentation')(self.json_config['dataset'])
if normals: # Enabling normals should be done every at every render
bproc.renderer.enable_normals_output()
data = bproc.renderer.render()
if segmentation:
data.update(bproc.renderer.render_segmap(map_by=["instance", "class"]))
return data
def save_data(self, path: Path, objects: List[bproc.types.MeshObject], data: Dict):
'''
Save the data to HDF5 format (one file per frame).
In addition, this function will compute the object information (bounding box, pose, class) if required.
path: Path to the folder in which to save the HDF5 files
'''
json_dataset = self.json_config['dataset']
num_frames_objects = json_dataset['images_per_scene']
out_object_pose, out_bounding_box = itemgetter('pose', 'detection')(json_dataset)
keys = ['min_side_size_px', 'min_visibility_percentage', 'points_sampling_occlusion']
min_side_px, min_visibility, points_sampling_occlusion = itemgetter(*keys)(json_dataset['detection_params'])
width, height = itemgetter('w', 'h')(self.json_config['camera'])
frames_data = []
for frame in range(bproc.utility.num_frames()):
worldTcam = bproc.camera.get_camera_pose(frame)
camTworld = homogeneous_inverse(worldTcam)
K = bproc.camera.get_intrinsics_as_K_matrix()
minx, miny = (-K[0, 2]) / K[0, 0], (-K[1, 2]) / K[1, 1]
maxx, maxy = (width -K[0, 2]) / K[0, 0], (height -K[1, 2]) / K[1, 1]
visible_objects = bproc.camera.visible_objects(worldTcam, min(width, height) // min_side_px)
objects_data = []
# Stop when parsing frames with no objects: blenderproc API still detects objects even though they're not here for these frames
if frame >= num_frames_objects:
frames_data.append({})
continue
for object in objects:
if object not in visible_objects:
continue
object_data = {
'class': object.get_cp('category_id', frame),
'name': object.get_name()
}
if out_object_pose:
worldTobj = homogeneous_no_scaling(object, frame)
camTobj = camTworld @ worldTobj
object_data['cTo'] = convert_to_visp_frame(camTobj)
if out_bounding_box:
bb_corners, z_front_proportion, points_im = bounding_box_2d_from_vertices(object, K, camTworld)
if z_front_proportion < min_visibility:
continue
mins = np.array([bb_corners[0], bb_corners[1]])
maxes = np.array([bb_corners[2], bb_corners[3]])
original_size = maxes - mins
original_area = np.prod(original_size)
mins = np.maximum(mins, [0, 0])
maxes = np.minimum(maxes, [width, height])
size = maxes - mins
area = np.prod(size)
# Filter objects that are too small to be believably detectable
if size[0] < min_side_px or size[1] < min_side_px:
continue
vis_points_in_image = points_im[(points_im[:, 0] > minx) & ((points_im[:, 0] < maxx)) & (points_im[:, 1] > miny) & ((points_im[:, 1] < maxy))]
base_visibility = z_front_proportion * (len(vis_points_in_image) / len(points_im))
# Camera clipping removes too much of the object
if base_visibility < min_visibility:
continue
if points_sampling_occlusion > 0:
point_count = len(vis_points_in_image)
points = vis_points_in_image[np.random.choice(point_count, size=min(point_count, points_sampling_occlusion))]
points = np.concatenate((points, np.ones((len(points), 1))), axis=-1)
points_cam = convert_points_to_visp_frame(points) # Convert back to blender frame
points_world = worldTcam @ np.concatenate((points_cam, np.ones((len(points_cam), 1))), axis=-1).T
points_world = (points_world[:3] / points_world[3, None]).T
ray_directions = points_world - worldTcam[None, :3, 3]
hit_count = 0
for ray in ray_directions:
hit_object = bproc.object.scene_ray_cast(worldTcam[:3, 3], ray)[-2]
if hit_object == object:
hit_count += 1
final_visibility = base_visibility * (hit_count / len(ray_directions))
# Including occlusions, the object is now not visible enough to be detectable
if final_visibility < min_visibility:
print(f'Filtered object {object.get_name()}, because of occlusions: {final_visibility}')
continue
object_data['bounding_box'] = [mins[0], mins[1], size[0], size[1]]
objects_data.append(object_data)
frames_data.append(objects_data)
data['object_data'] = frames_data
bproc.writer.write_hdf5(str(path.absolute()), data, append_to_existing_output=False)
def set_camera_intrinsics(self) -> None:
'''
Set camera intrinsics from config.
Randomized depending on randomize_params_percent. This does not impact image resolution.
'''
px, py, u0, v0, h, w , r = itemgetter('px', 'py', 'u0', 'v0', 'h', 'w', 'randomize_params_percent')(self.json_config['camera'])
r = r / 100.0
randomize = lambda x: x + np.random.uniform(-x * r, x * r)
K = [
[randomize(px), 0, randomize(u0)],
[0, randomize(py), randomize(v0)],
[0, 0, 1],
]
bproc.camera.set_intrinsics_from_K_matrix(K, w, h)
def create_distractors(self, scene_size: float) -> List[bproc.types.MeshObject]:
'''
Add distractor objects
'''
json_distractors = self.json_config['scene']['distractors']
min_count, max_count = itemgetter('min_count', 'max_count')(json_distractors)
custom_distractors_path, custom_distractors_proba = itemgetter('custom_distractors', 'custom_distractor_proba')(json_distractors)
count = np.random.randint(min_count, max_count + 1)
if custom_distractors_path is not None:
custom_count = np.sum(np.random.choice(2, size=count, replace=True, p=[1 - custom_distractors_proba, custom_distractors_proba]))
else:
custom_count = 0
simple_count = count - custom_count
return self.create_simple_distractors(scene_size, simple_count) + self.create_custom_distractors(scene_size, custom_count)
def create_custom_distractors(self, scene_size, count: int) -> List[bproc.types.MeshObject]:
json_distractors = self.json_config['scene']['distractors']
min_size, max_size, pbr_noise = itemgetter('min_size_rel_scene', 'max_size_rel_scene', 'pbr_noise')(json_distractors)
custom_distractors_path = itemgetter('custom_distractors')(json_distractors)
if count == 0:
return []
distractor_files = []
assert Path(custom_distractors_path).exists(), f'Custom distractors folder {custom_distractors_path} does not exist'
for file in Path(custom_distractors_path).iterdir():
if file.name.endswith(('.ply', '.obj')):
distractor_files.append(file)
assert len(distractor_files) > 0, f'Requested custom distractors from folder but {custom_distractors_path} did not find any!'
chosen_files_list = np.random.choice(distractor_files, size=count, replace=True)
chosen_files_set = set(chosen_files_list)
path_to_object = {}
for path in chosen_files_set:
obj = bproc.loader.load_obj(str(path.absolute()))[0]
obj.set_location([100000.0, 100000.0, 10000.0])
path_to_object[path] = obj
chosen_distractors = []
for path in chosen_files_list:
distractor = path_to_object[path].duplicate()
chosen_distractors.append(distractor)
object_size = object_bb_length(distractor)
rescale_size = np.random.uniform((scene_size * min_size) / object_size, (scene_size * max_size) / object_size)
distractor.set_scale([rescale_size, rescale_size, rescale_size])
def sample_pose(obj: bproc.types.MeshObject):
loc = np.random.uniform([-scene_size / 2, -scene_size / 2, -scene_size / 2], [scene_size / 2, scene_size / 2, scene_size / 2])
obj.set_location(loc)
obj.set_rotation_euler(bproc.sampler.uniformSO3())
bproc.object.sample_poses(
chosen_distractors,
sample_pose_func=sample_pose,
objects_to_check_collisions=None
)
randomize_pbr(chosen_distractors, pbr_noise)
return chosen_distractors
def create_simple_distractors(self, scene_size: float, count: int) -> List[bproc.types.MeshObject]:
'''
Add simple objects to the scene.
These objects have no class (no bounding box computed and does not appear in segmentation)
They are meant to add variation to the scene
Their position, texture and shape are randomized.
Their size is also randomized, in a range that is dependent on the scale of the room
The 3D models are simple primitives (cube, sphere, cone, etc.) and they are distorted through the displacement_max_amount_params
'''
json_distractors = self.json_config['scene']['distractors']
min_size, max_size = itemgetter('min_size_rel_scene', 'max_size_rel_scene')(json_distractors)
displacement_strength, pbr_noise = itemgetter('displacement_max_amount', 'pbr_noise')(json_distractors)
emissive_proba, emissive_min_strength, emissive_max_strength = itemgetter(*['emissive_' + s for s in ['prob', 'min_strength', 'max_strength']])(json_distractors)
if count == 0:
return []
def sample_pose(obj: bproc.types.MeshObject):
loc = np.random.uniform([-scene_size / 2, -scene_size / 2, -scene_size / 2], [scene_size / 2, scene_size / 2, scene_size / 2])
obj.set_location(loc)
obj.set_scale(np.random.uniform(scene_size * min_size, scene_size * max_size, size=3))
obj.set_rotation_euler(bproc.sampler.uniformSO3())
distractor_type = np.random.choice(['CUBE', 'CYLINDER', 'CONE', 'SPHERE', 'MONKEY'], size=count, replace=True)
distractors = [bproc.object.create_primitive(distractor_type[c]) for c in range(count)]
bproc.object.sample_poses(
distractors,
sample_pose_func=sample_pose,
objects_to_check_collisions=None
)
for obj in distractors:
random_texture = np.random.choice(self.cc_textures)
obj.replace_materials(random_texture)
randomize_pbr(distractors, pbr_noise)
if displacement_strength > 0.0:
add_displacement(distractors, displacement_strength)
if emissive_proba > 0.0:
for distractor in distractors:
is_emissive = np.random.uniform(0.0, 1.0) < emissive_proba
if is_emissive:
for material in distractor.get_materials():
emission_strength = np.random.uniform(emissive_min_strength, emissive_max_strength)
material.make_emissive(emission_strength)
return distractors
def create_lights(self, scene_size: float, target_objects: List[bproc.types.MeshObject]) -> List[bproc.types.Light]:
'''
Add lights to the environment.
Sample n lights between min_count and max_count:
For each light:
- Randomly choose whether it is a point light (uniform lighting) or a spot (lighting in cone, focused on random target object)
- Randomly set its intensity between min_intensity and max_intensity
- Randomly set its position
- Randomly set its color
'''
light_json = self.json_config['scene']['lights']
min_count, max_count = itemgetter('min_count', 'max_count')(light_json)
min_intensity, max_intensity = itemgetter('min_intensity', 'max_intensity')(light_json)
count = np.random.randint(min_count, max_count + 1)
point_light_count = np.sum(np.random.choice(2, size=count, replace=True))
spot_light_count = count - point_light_count
lights = []
def basic_light_sampling(light: bproc.types.Light) -> None:
loc = np.random.uniform([-scene_size / 2, -scene_size / 2, -scene_size / 2], [scene_size / 2, scene_size / 2, scene_size / 2])
light.set_location(loc)
light.set_energy(np.random.uniform(min_intensity, max_intensity))
light.set_color(np.random.uniform(0.5, 1.0, size=3))
for _ in range(point_light_count):
light = bproc.types.Light('POINT')
basic_light_sampling(light)
lights.append(light)
for _ in range(spot_light_count):
light = bproc.types.Light('SPOT')
basic_light_sampling(light)
# Point towards a target object
looked_at_obj = np.random.choice(len(target_objects))
looked_at_obj: bproc.types.MeshObject = target_objects[looked_at_obj]
poi = point_in_bounding_box(looked_at_obj)
R = bproc.camera.rotation_from_forward_vec(poi - light.get_location())
light.set_rotation_mat(R)
lights.append(light)
return lights
def create_target_objects(self) -> List[bproc.types.MeshObject]:
'''
Sample targets objects (3D models that are provided by the user). These target objects have a class and their bounding box and pose may be computed.
N objects are sampled, between min_count and max_count.
If multiple_occurences is true, then a single object may appear multiple times in scene (and in the images)
For each object:
- Randomly set its pose in the room
- Randomly change its scale if scale_noise > 0.0
Note that the target models should already be loaded before calling this function
'''
json_objects = self.json_config['scene']['objects']
min_count, max_count, replace = itemgetter('min_count', 'max_count', 'multiple_occurences')(json_objects)
scale_noise, displacement_amount, pbr_noise = itemgetter('scale_noise', 'displacement_max_amount', 'pbr_noise')(json_objects)
object_keys = list(self.objects.keys())
if not replace:
max_count = min(max_count, len(object_keys))
min_count = min(min_count, max_count)
count = np.random.randint(min_count, max_count + 1)
selected_key_indices = np.random.choice(len(object_keys), size=count, replace=replace)
objects: List[bproc.types.MeshObject] = [self.objects[object_keys[index]].duplicate() for index in selected_key_indices]
for object in objects:
object.hide(False)
if scale_noise > 0.0:
random_scale = np.random.uniform(-scale_noise, scale_noise) + 1.0
object.set_scale([random_scale, random_scale, random_scale]) # Uniform scaling
object.set_location([0.0, 0.0, 0.0])
object.persist_transformation_into_mesh(location=False, rotation=False, scale=True)
if displacement_amount > 0.0:
add_displacement(objects, displacement_amount)
if pbr_noise > 0.0:
randomize_pbr(objects, pbr_noise)
return objects
def create_room(self, size: float) -> List[bproc.types.MeshObject]:
'''
Create a basic square room, with size size.
The materials of the walls are randomly sampled
'''
ground = bproc.object.create_primitive('PLANE')
ground.set_location([0, 0, -size / 2])
ground.set_scale([size / 2, size / 2, 1])
room_objects = [ground]
wall_data = [
{'loc': [size / 2, 0, 0], 'rot': [0, np.pi / 2, 0]},
{'loc': [-size / 2, 0, 0], 'rot': [0, np.pi / 2, 0]},
{'loc': [0, size / 2, 0], 'rot': [np.pi / 2, 0, 0]},
{'loc': [0, -size / 2, 0], 'rot': [np.pi / 2, 0, 0]},
{'loc': [0, 0, size / 2], 'rot': [0.0, 0, 0]},
]
for w_data in wall_data:
wall = bproc.object.create_primitive('PLANE')
wall.set_location(w_data['loc'])
wall.set_rotation_euler(w_data['rot'])
wall.set_scale([size / 2, size / 2, 1])
room_objects.append(wall)
for obj in room_objects:
random_texture = np.random.choice(self.cc_textures)
obj.replace_materials(random_texture)
randomize_pbr(room_objects, 0.2)
return room_objects
def create_scene(self):
'''
Create a basic scene, a square room.
The size of the room is dependent on the size of the biggest object multiplied by a user supplied param.
Each wall has a random texture, sampled from cc0 materials.
Distractors are added randomly in the room.
Random lights are also placed.
If simulate physics is true, then objects are dropped on the ground.
When using simulate physics, some objects may leave the room (through weird collisions): they are deleted.
'''
objects = []
room_size = 0.0
room_size_multiplier_min, room_size_multiplier_max = itemgetter('room_size_multiplier_min', 'room_size_multiplier_max')(self.json_config['scene'])
simulate_physics = self.json_config['scene']['simulate_physics']
assert room_size_multiplier_min >= 1.0, 'Room size multiplier should be more than one'
objects = self.create_target_objects()
for object in objects:
room_size = max(object_bb_length(object), room_size)
size = room_size * np.random.uniform(room_size_multiplier_min, room_size_multiplier_max)
room_objects = self.create_room(size)
def sample_pose(obj: bproc.types.MeshObject):
loc = np.random.uniform([-size / 2, -size / 2, -size / 2], [size / 2, size / 2, size / 2])
obj.set_location(loc)
obj.set_rotation_euler(bproc.sampler.uniformSO3())
bproc.object.sample_poses(
objects,
sample_pose_func=sample_pose,
objects_to_check_collisions=None
)
for object in objects:
object.persist_transformation_into_mesh(location=False, rotation=False, scale=True)
distractors = self.create_distractors(size)
if simulate_physics:
for object in objects + distractors:
object.enable_rigidbody(True)
for object in room_objects:
object.enable_rigidbody(False, collision_shape='BOX')
bproc.object.simulate_physics_and_fix_final_poses(min_simulation_time=3, max_simulation_time=3.5, check_object_interval=1)
def filter_objects_outside_room(objects: List[bproc.types.MeshObject]) -> List[bproc.types.MeshObject]:
inside = []
outside = []
is_inside = lambda loc: np.all(np.logical_and(loc < size / 2, loc > -size / 2))
for object in objects:
inside.append(object) if is_inside(object.get_location()) else outside.append(object)
for object in outside:
object.delete()
print(f'Filtered {len(objects) - len(inside)} objects that were outside the room')
return inside
objects = filter_objects_outside_room(objects)
distractors = filter_objects_outside_room(distractors)
lights = self.create_lights(size, objects) # do this after potential physics sampling so that spots are correctly oriented
scene = Scene(size, objects, distractors, room_objects, lights)
return scene
def sample_camera_poses(self, scene: Scene) -> None:
'''
Sample camera poses in a scene.
Camera are sampled as such:
- Select a target object: choose a point of interest in its bounding box
- Choose a camera position in a "hollow ball": the position should be at at least (cam_min_dist_rel * object_size) meters from the object
and at at most (cam_max_dist_rel * object_size). Note that the object size is computed from the largest diagonal of the axis aligned bounding box and is thus overestimated.
- Fix camera orientation so that it points towards the point of interest
'''
dataset_config = self.json_config['dataset']
images_per_scene = dataset_config['images_per_scene']
cam_min_dist, cam_max_dist = itemgetter('cam_min_dist_rel', 'cam_max_dist_rel')(self.json_config['scene']['objects'])
hs = scene.size / 2
bvh = bproc.object.create_bvh_tree_multi_objects(scene.target_objects + scene.distractors + scene.room_objects)
for frame in range(images_per_scene):
tries = 0
good = False
while not good and tries < 1000:
object = scene.target_objects[np.random.choice(len(scene.target_objects))]
object_size = object_bb_length(object)
poi = point_in_bounding_box(object, bb_scale=1)
tries_distance = 0
# To fight the potential bias of having many more far camera than near cameras, Generate multiple hypothesis for a single distance before rejecting it.
# This gives more chance to near camera locations, that have a higher risk of occlusion.
distance = np.random.uniform(cam_min_dist, cam_max_dist)
while not good and tries_distance < 100:
location = bproc.sampler.sphere(object.get_location(), distance * object_size, 'SURFACE')
rotation_matrix = bproc.camera.rotation_from_forward_vec(poi - location, inplane_rot=np.random.uniform(-0.7854, 0.7854))
cam = bpy.context.scene.camera.data
clip_start = cam.clip_start
focal_length = cam.lens / 1000.0
cam2world_matrix = bproc.math.build_transformation_mat(location, rotation_matrix)
if object in bproc.camera.visible_objects(cam2world_matrix, 10) and bproc.camera.perform_obstacle_in_view_check(cam2world_matrix, {'min': focal_length + clip_start}, bvh):
good = True
else:
good = False
tries += 1
tries_distance += 1
if tries >= 1000:
print('Warning! Could not correctly place camera, results may be wrong')
bproc.camera.add_camera_pose(cam2world_matrix)
def add_empty_images(self, count: int, scene: Scene):
'''
Add empty images to the rendering queue. The camera poses for the empty images are sampled from already existing poses (where the target object should be visible)
The number of empty images cannot thus be more than the number of images with target objects present.
'''
num_frames = bproc.utility.num_frames()
assert count <= num_frames, 'Number of empty images cannot be greater than the number of images with objects'
empty_frame_chosen_indices = np.random.choice(num_frames, size=count, replace=False)
for object in scene.target_objects:
location = object.get_location()
for i in range(num_frames):
object.set_location(location, frame=i)
for i, f in enumerate(empty_frame_chosen_indices):
bproc.camera.add_camera_pose(bproc.camera.get_camera_pose(f))
for object in scene.target_objects:
object.set_location([10000.0, 10000.0, 10000.0], frame=num_frames + i)
def run(self):
'''
Generate the scenes and save the results.
'''
save_path = Path(self.json_config['dataset']['save_path'])
save_path.mkdir(exist_ok=True)
self.init()
for i in range(self.scene_count):
bproc.utility.reset_keyframes()
self.set_camera_intrinsics()
scene = self.create_scene()
while len(scene.target_objects) == 0:
scene.cleanup()
scene = self.create_scene()
self.sample_camera_poses(scene)
self.add_empty_images(self.json_config['dataset']['empty_images_per_scene'], scene)
# bpy.context.scene.render.use_persistent_data = False
data = self.render()
path = save_path / str(self.scene_index + i)
path.mkdir(exist_ok=True)
self.save_data(path, scene.target_objects, data)
scene.cleanup()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', required=True, type=str, help='Path to the JSON configuration file for the dataset generation script')
parser.add_argument('--scene-index', required=True, type=int, help='Index of the first scene to generate')
parser.add_argument('--scene-count', required=True, type=int, help='Number of scenes to render')
args = parser.parse_args()
generator = Generator(args.config, args.scene_index, args.scene_count)
# RendererUtility.set_render_devices(use_only_cpu=True)
bproc.clean_up(clean_up_camera=True)
bproc.init() # Works if you have a GPU
generator.run()
|