File: tutorial-ukf.cpp

package info (click to toggle)
visp 3.7.0-7
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 166,380 kB
  • sloc: cpp: 392,705; ansic: 224,448; xml: 23,444; python: 13,701; java: 4,792; sh: 206; objc: 145; makefile: 118
file content (470 lines) | stat: -rw-r--r-- 16,605 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
/** \example tutorial-ukf.cpp
 * Tutorial on how to use the Unscented Kalman Filter (UKF) on a complex non-linear use-case.
 * The system is an object, whose coordinate frame origin is the point O, on which are sticked four markers.
 * The object revolves in a plane parallel to the ground around a fixed point W whose coordinate frame is the world frame.
 * The scene is observed by a pinhole camera whose coordinate frame has the origin C and which is
 * fixed to the ceiling.
 *
 * The state vector of the UKF is:
 * \f[
 * \begin{array}{lcl}
 *   \textbf{x}[0] &=& {}^WX_x \\
 *   \textbf{x}[1] &=& {}^WX_y \\
 *   \textbf{x}[2] &=& {}^WX_z \\
 *   \textbf{x}[3] &=& \omega \Delta t
 * \end{array}
 * \f]
 *
 * The measurement \f$ \textbf{z} \f$ corresponds to the coordinates in pixels of the different markers.
 * Be \f$ u_i \f$ and \f$ v_i \f$ the horizontal and vertical pixel coordinates of the \f$ i^{th} \f$ marker.
 * The measurement vector can be written as:
 * \f[
 *   \begin{array}{lcl}
 *       \textbf{z}[2i] &=& u_i \\
 *       \textbf{z}[2i+1] &=& v_i
 *   \end{array}
 * \f]
 *
 * Some noise is added to the measurement vector to simulate measurements which are
 * not perfect.
*/

// ViSP includes
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpGaussRand.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpMeterPixelConversion.h>
#include <visp3/core/vpPixelMeterConversion.h>
//! [Display_includes]
#ifdef VISP_HAVE_DISPLAY
#include <visp3/gui/vpPlot.h>
#include <visp3/gui/vpDisplayFactory.h>
#endif
//! [Display_includes]
#include <visp3/vision/vpPose.h>

//! [UKF_includes]
#include <visp3/core/vpUKSigmaDrawerMerwe.h>
#include <visp3/core/vpUnscentedKalman.h>
//! [UKF_includes]

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
//! [Process_function]
/**
 * \brief Process function that makes evolve the state model {\f$ {}^WX_x \f$, \f$ {}^WX_y \f$, \f$ {}^WX_z \f$, \f$ C = \omega \Delta t \f$}
 * over time.
 *
 * \param[in] x The state vector
 * \return vpColVector The state vector at the next iteration.
 */
vpColVector fx(const vpColVector &x, const double & /*dt*/)
{
  vpColVector x_kPlus1(4);
  x_kPlus1[0] = x[0] * std::cos(x[3]) - x[1] * std::sin(x[3]); // wX
  x_kPlus1[1] = x[0] * std::sin(x[3]) + x[1] * std::cos(x[3]); // wY
  x_kPlus1[2] = x[2]; // wZ
  x_kPlus1[3] = x[3]; // omega * dt
  return x_kPlus1;
}
//! [Process_function]

//! [Object_simulator]
/**
 * \brief Class that simulates the moving object.
 */
class vpObjectSimulator
{
public:
  /**
   * \brief Construct a new vpObjectSimulator object.
   *
   * \param[in] R The radius of the revolution around the world frame origin.
   * \param[in] w The pulsation of the motion.
   * \param[in] phi The phase of the motion.
   * \param[in] wZ The y-coordinate of the object in the world frame.
   */
  vpObjectSimulator(const double &R, const double &w, const double &phi, const double &wZ)
    : m_R(R)
    , m_w(w)
    , m_phi(phi)
    , m_wZ(wZ)
  { }

  /**
   * \brief Move the object to its new position, expressed in the world frame.
   *
   * \param[in] t The current time.
   * \return vpColVector The new position of the object in the world frame, expressed as homogeneous coordinates.
   */
  vpColVector move(const double &t) const
  {
    vpColVector wX(4, 1.);
    wX[0] = m_R * std::cos(m_w * t + m_phi);
    wX[1] = m_R * std::sin(m_w * t + m_phi);
    wX[2] = m_wZ;
    return wX;
  }

private:
  double m_R; // Radius of the revolution around the world frame origin.
  double m_w; // Pulsation of the motion.
  double m_phi; // Phase of the motion.
  const double m_wZ; // The z-coordinate of the object in the world frame.
};
//! [Object_simulator]

//! [Markers_class]
/**
 * \brief Class that permits to convert the 3D position of the object into measurements.
 */
class vpMarkersMeasurements
{
public:
  /**
   * \brief Construct a new vpMarkersMeasurements object.
   *
   * \param[in] cam The camera parameters.
   * \param[in] cMw The pose of the world frame with regard to the camera frame.
   * \param[in] wRo The rotation matrix expressing the rotation between the world frame and object frame.
   * \param[in] markers The position of the markers in the object frame.
   * \param[in] noise_stdev The standard deviation for the noise generator
   * \param[in] seed The seed for the noise generator
   */
  vpMarkersMeasurements(const vpCameraParameters &cam, const vpHomogeneousMatrix &cMw, const vpRotationMatrix &wRo,
                        const std::vector<vpColVector> &markers, const double &noise_stdev, const long &seed)
    : m_cam(cam)
    , m_cMw(cMw)
    , m_wRo(wRo)
    , m_markers(markers)
    , m_rng(noise_stdev, 0., seed)
  { }

  //! [Measurement_function]
  /**
   * \brief Convert the prior of the UKF into the measurement space.
   *
   * \param[in] x The prior.
   * \return vpColVector The prior expressed in the measurement space.
   */
  vpColVector state_to_measurement(const vpColVector &x)
  {
    unsigned int nbMarkers = static_cast<unsigned int>(m_markers.size());
    vpColVector meas(2*nbMarkers);
    vpHomogeneousMatrix wMo;
    vpTranslationVector wTo(x[0], x[1], x[2]);
    wMo.buildFrom(wTo, m_wRo);
    for (unsigned int i = 0; i < nbMarkers; ++i) {
      vpColVector cX = m_cMw * wMo * m_markers[i];
      double u = 0., v = 0.;
      vpMeterPixelConversion::convertPoint(m_cam, cX[0] / cX[2], cX[1] / cX[2], u, v);
      meas[2*i] = u;
      meas[2*i + 1] = v;
    }
    return meas;
  }
  //! [Measurement_function]

  //! [GT_measurements]
  /**
   * \brief Perfect measurement of the projection of the markers in the image when the object
   * is located at \b wX.
   *
   * \param[in] wX The actual position of the robot (wX[0]: x, wX[1]: y, wX[2] = z).
   * \return vpColVector [2*i] u_i [2*i + 1] v_i where i is the index of the marker.
   */
  vpColVector measureGT(const vpColVector &wX)
  {
    unsigned int nbMarkers = static_cast<unsigned int>(m_markers.size());
    vpColVector meas(2*nbMarkers);
    vpHomogeneousMatrix wMo;
    vpTranslationVector wTo(wX[0], wX[1], wX[2]);
    wMo.buildFrom(wTo, m_wRo);
    for (unsigned int i = 0; i < nbMarkers; ++i) {
      vpColVector cX = m_cMw * wMo * m_markers[i];
      double u = 0., v = 0.;
      vpMeterPixelConversion::convertPoint(m_cam, cX[0] / cX[2], cX[1] / cX[2], u, v);
      meas[2*i] = u;
      meas[2*i + 1] = v;
    }
    return meas;
  }
  //! [GT_measurements]

  //! [Noisy_measurements]
  /**
   * \brief Noisy measurement of the projection of the markers in the image when the object
   * is located at \b wX.
   *
   * \param[in] wX The actual position of the robot (wX[0]: x, wX[1]: y, wX[2] = z).
   * \return vpColVector [2*i] u_i [2*i + 1] v_i where i is the index of the marker.
   */
  vpColVector measureWithNoise(const vpColVector &wX)
  {
    vpColVector measurementsGT = measureGT(wX);
    vpColVector measurementsNoisy = measurementsGT;
    unsigned int sizeMeasurement = measurementsGT.size();
    for (unsigned int i = 0; i < sizeMeasurement; ++i) {
      measurementsNoisy[i] += m_rng();
    }
    return measurementsNoisy;
  }
  //! [Noisy_measurements]

private:
  vpCameraParameters m_cam; // The camera parameters
  vpHomogeneousMatrix m_cMw; // The pose of the world frame with regard to the camera frame.
  vpRotationMatrix m_wRo; // The rotation matrix that expresses the rotation between the world frame and object frame.
  std::vector<vpColVector> m_markers; // The position of the markers in the object frame.
  vpGaussRand m_rng; // Noise simulator for the measurements
};
//! [Markers_class]

//! [Pose_for_display]
/**
 * \brief Compute the pose from the 3D coordinates of the markers and their coordinates in pixels
 * in the image.
 *
 * \param[in] point The 3D coordinates of the markers in the object frame.
 * \param[in] ip The pixel coordinates of the markers in the image.
 * \param[in] cam The camera parameters used to acquire the image.
 * \return vpHomogeneousMatrix The pose of the object in the camera frame.
 */
vpHomogeneousMatrix computePose(std::vector<vpPoint> &point, const std::vector<vpImagePoint> &ip, const vpCameraParameters &cam)
{
  vpPose pose;
  double x = 0, y = 0;
  for (unsigned int i = 0; i < point.size(); i++) {
    vpPixelMeterConversion::convertPoint(cam, ip[i], x, y);
    point[i].set_x(x);
    point[i].set_y(y);
    pose.addPoint(point[i]);
  }

  vpHomogeneousMatrix cMo;
  pose.computePose(vpPose::DEMENTHON_LAGRANGE_VIRTUAL_VS, cMo);
  return cMo;
}
//! [Pose_for_display]

int main(/*const int argc, const char *argv[]*/)
{
  //! [Constants_for_simulation]
  const double dt = 0.001; // Period of 0.1s
  const double sigmaMeasurements = 2.; // Standard deviation of the measurements: 2 pixels
  const double radius = 0.25; // Radius of revolution of 0.25m
  const double w = 2 * M_PI * 10; // Pulsation of the motion of revolution
  const double phi = 2; // Phase of the motion of revolution

  // Vector of the markers sticked on the object
  const std::vector<vpColVector> markers = { vpColVector({-0.05, 0.05, 0., 1.}),
                                             vpColVector({0.05, 0.05, 0., 1.}),
                                             vpColVector({0.05, -0.05, 0., 1.}),
                                             vpColVector({-0.05, -0.05, 0., 1.}) };
  const unsigned int nbMarkers = static_cast<unsigned int>(markers.size());
  std::vector<vpPoint> markersAsVpPoint;
  for (unsigned int i = 0; i < nbMarkers; ++i) {
    vpColVector marker = markers[i];
    markersAsVpPoint.push_back(vpPoint(marker[0], marker[1], marker[2]));
  }

  const long seed = 42; // Seed for the random generator
  vpHomogeneousMatrix cMw; // Pose of the world frame with regard to the camera frame
  cMw[0][0] = 1.; cMw[0][1] = 0.; cMw[0][2] = 0.; cMw[0][3] = 0.2;
  cMw[1][0] = 0.; cMw[1][1] = -1.; cMw[1][2] = 0.; cMw[1][3] = 0.3;
  cMw[2][0] = 0.; cMw[2][1] = 0.; cMw[2][2] = -1.; cMw[2][3] = 1.;

  vpHomogeneousMatrix wMo; // Pose of the object frame with regard to the world frame
  wMo[0][0] = 1.; wMo[0][1] = 0.; wMo[0][2] = 0.; wMo[0][3] = radius;
  wMo[1][0] = 0.; wMo[1][1] = 1.; wMo[1][2] = 0.; wMo[1][3] = 0;
  wMo[2][0] = 0.; wMo[2][1] = 0.; wMo[2][2] = 1.; wMo[2][3] = 0.2;
  vpRotationMatrix wRo; // Rotation between the object frame and world frame
  wMo.extract(wRo);
  const double wZ = wMo[2][3];
  //! [Constants_for_simulation]

  //! [Camera_for_measurements]
  // Create a camera parameter container
  // Camera initialization with a perspective projection without distortion model
  double px = 600; double py = 600; double u0 = 320; double v0 = 240;
  vpCameraParameters cam;
  cam.initPersProjWithoutDistortion(px, py, u0, v0);
  //! [Camera_for_measurements]

  // Initialize the attributes of the UKF
  //! [Sigma_points_drawer]
  std::shared_ptr<vpUKSigmaDrawerAbstract> drawer = std::make_shared<vpUKSigmaDrawerMerwe>(4, 0.001, 2., -1);
  //! [Sigma_points_drawer]

  //! [Covariance_measurements]
  vpMatrix R1landmark(2, 2, 0.); // The covariance of the noise introduced by the measurement with 1 landmark
  R1landmark[0][0] = sigmaMeasurements*sigmaMeasurements;
  R1landmark[1][1] = sigmaMeasurements*sigmaMeasurements;
  vpMatrix R(2*nbMarkers, 2 * nbMarkers);
  for (unsigned int i = 0; i < nbMarkers; ++i) {
    R.insert(R1landmark, 2*i, 2*i);
  }
  //! [Covariance_measurements]

  //! [Covariance_process]
  const double processVariance = 0.000025; // Variance of the process of (0.005cm)^2
  vpMatrix Q; // The covariance of the process
  Q.eye(4);
  Q = Q * processVariance;
  //! [Covariance_process]

  //! [Initial_estimates]
  vpMatrix P0(4, 4); //  The initial guess of the process covariance
  P0.eye(4);
  P0[0][0] = 1.;
  P0[1][1] = 1.;
  P0[2][2] = 1.;
  P0[2][2] = 5.;

  vpColVector X0(4); // The initial guess for the state
  X0[0] = radius; // wX = radius m
  X0[1] = 0.; // wY = 0m
  X0[2] = 0.95 * wZ; // Wrong estimation of the position along the z-axis: error of 5%
  X0[3] = 0.75 * w * dt; // Wrong estimation of the pulsation: error of 25%
  //! [Initial_estimates]

  //! [Init_functions]
  vpUnscentedKalman::vpProcessFunction f = fx;
  vpMarkersMeasurements markerMeas(cam, cMw, wRo, markers, sigmaMeasurements, seed);
  using std::placeholders::_1;
  vpUnscentedKalman::vpMeasurementFunction h = std::bind(&vpMarkersMeasurements::state_to_measurement, &markerMeas, _1);
  //! [Init_functions]

  //! [Init_UKF]
  // Initialize the UKF
  vpUnscentedKalman ukf(Q, R, drawer, f, h);
  ukf.init(X0, P0);
  //! [Init_UKF]

  //! [Init_plot]
#ifdef VISP_HAVE_DISPLAY
  // Initialize the plot
  vpPlot plot(1);
  plot.initGraph(0, 3);
  plot.setTitle(0, "Position of the robot wX");
  plot.setUnitX(0, "Position along x(m)");
  plot.setUnitY(0, "Position along y (m)");
  plot.setLegend(0, 0, "GT");
  plot.setLegend(0, 1, "Filtered");
  plot.setLegend(0, 2, "Measure");
  plot.initRange(0, -1.25 * radius, 1.25 * radius, -1.25 * radius, 1.25 * radius);
  plot.setColor(0, 0, vpColor::red);
  plot.setColor(0, 1, vpColor::blue);
  plot.setColor(0, 2, vpColor::black);
#endif
  //! [Init_plot]

  //! [Init_renderer]
  // Initialize the display
  // Depending on the detected third party libraries, we instantiate here the
  // first video device which is available
#ifdef VISP_HAVE_DISPLAY
  vpImage<vpRGBa> Idisp(700, 700, vpRGBa(255));
  std::shared_ptr<vpDisplay> d = vpDisplayFactory::createDisplay(Idisp, 800, -1, "Projection of the markers");
#endif
  //! [Init_renderer]

  //! [Init_simu]
  // Initialize the simulation
  vpObjectSimulator object(radius, w, phi, wZ);
  vpColVector object_pos(4, 0.);
  object_pos[3] = 1.;
  //! [Init_simu]

  //! [Simu_loop]
  for (unsigned int i = 0; i < 200; ++i) {
    //! [Update obj pose]
    // Update object pose
    object_pos = object.move(dt * static_cast<double>(i));
    //! [Update obj pose]

    //! [Update_measurement]
    // Perform the measurement
    vpColVector z = markerMeas.measureWithNoise(object_pos);
    //! [Update_measurement]

    //! [Perform_filtering]
    // Use the UKF to filter the measurement
    ukf.filter(z, dt);
    //! [Perform_filtering]

    //! [Update_displays]
#ifdef VISP_HAVE_DISPLAY
    //! [Noisy_pose]
    // Prepare the pose computation:
    // the image points corresponding to the noisy markers are needed
    std::vector<vpImagePoint> ip;
    for (unsigned int id = 0; id < nbMarkers; ++id) {
      vpImagePoint markerProjNoisy(z[2*id + 1], z[2*id]);
      ip.push_back(markerProjNoisy);
    }

    // Compute the pose using the noisy markers
    vpHomogeneousMatrix cMo_noisy = computePose(markersAsVpPoint, ip, cam);
    vpHomogeneousMatrix wMo_noisy = cMw.inverse() * cMo_noisy;
    double wXnoisy = wMo_noisy[0][3];
    double wYnoisy = wMo_noisy[1][3];
    //! [Noisy_pose]

    //! [Update_plot]
    // Plot the ground truth
    plot.plot(0, 0, object_pos[0], object_pos[1]);

    // Plot the filtered state
    vpColVector Xest = ukf.getXest();
    plot.plot(0, 1, Xest[0], Xest[1]);

    // Plot the noisy pose
    plot.plot(0, 2, wXnoisy, wYnoisy);
    //! [Update_plot]

    //! [Update_renderer]
    // Display the projection of the markers
    vpDisplay::display(Idisp);
    vpColVector zGT = markerMeas.measureGT(object_pos);
    vpColVector zFilt = markerMeas.state_to_measurement(Xest);
    for (unsigned int id = 0; id < nbMarkers; ++id) {
      vpImagePoint markerProjGT(zGT[2*id + 1], zGT[2*id]);
      vpDisplay::displayCross(Idisp, markerProjGT, 5, vpColor::red);

      vpImagePoint markerProjFilt(zFilt[2*id + 1], zFilt[2*id]);
      vpDisplay::displayCross(Idisp, markerProjFilt, 5, vpColor::blue);

      vpImagePoint markerProjNoisy(z[2*id + 1], z[2*id]);
      vpDisplay::displayCross(Idisp, markerProjNoisy, 5, vpColor::black);
    }

    vpImagePoint ipText(20, 20);
    vpDisplay::displayText(Idisp, ipText, std::string("GT"), vpColor::red);
    ipText.set_i(ipText.get_i() + 20);
    vpDisplay::displayText(Idisp, ipText, std::string("Filtered"), vpColor::blue);
    ipText.set_i(ipText.get_i() + 20);
    vpDisplay::displayText(Idisp, ipText, std::string("Measured"), vpColor::black);
    vpDisplay::flush(Idisp);
    vpTime::wait(40);
    //! [Update_renderer]
#endif
    //! [Update_displays]
  }
  //! [Simu_loop]
  std::cout << "Press Enter to quit..." << std::endl;
  std::cin.get();

  return 0;
}
#else
int main()
{
  std::cout << "This example is only available if you compile ViSP in C++11 standard or higher." << std::endl;
  return 0;
}
#endif