1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
|
/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
//! \example tutorial-meandrift.cpp
#include <cstring> //std::memcpy
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpGaussRand.h>
#include <visp3/core/vpStatisticalTestEWMA.h>
#include <visp3/core/vpStatisticalTestHinkley.h>
#include <visp3/core/vpStatisticalTestMeanAdjustedCUSUM.h>
#include <visp3/core/vpStatisticalTestShewhart.h>
#include <visp3/core/vpStatisticalTestSigma.h>
#include <visp3/gui/vpPlot.h>
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
#if defined(VISP_HAVE_DISPLAY)
namespace TutorialMeanDrift
{
//! [Enum_For_Test_Choice]
/**
* \brief Enumeration that permits to choose which process test to use.
*
*/
typedef enum TypeTest
{
HINLKEY_TYPE_TEST = 0, /*!< Use Hinkley's test.*/
EWMA_TYPE_TEST = 1, /*!< Use Exponentially Weighted Moving Average to perform the tests.*/
MEAN_ADJUSTED_CUSUM_TYPE_TEST = 2, /*!< Use mean adjusted Cumulative Sum to perform the tests.*/
SHEWHART_TYPE_TEST = 3, /*!< Shewhart's test.*/
SIGMA_TYPE_TEST = 4, /*!< Simple test based on the comparisong with the standard deviation.*/
COUNT_TYPE_TEST = 5, /*!< Number of different aavailable methods.*/
UNKOWN_TYPE_TEST = COUNT_TYPE_TEST /*!< Unknown method.*/
}TypeTest;
//! [Enum_For_Test_Choice]
/**
* \brief Permit to cast a \b TypeTest object into a string, for display purpose.
*
* \param[in] type The \b TypeTest object we want to know the name.
* \return std::string The corresponding name.
*/
std::string typeTestToString(const TypeTest &type)
{
std::string result;
switch (type) {
case HINLKEY_TYPE_TEST:
result = "hinkley";
break;
case EWMA_TYPE_TEST:
result = "ewma";
break;
case MEAN_ADJUSTED_CUSUM_TYPE_TEST:
result = "cusum";
break;
case SHEWHART_TYPE_TEST:
result = "shewhart";
break;
case SIGMA_TYPE_TEST:
result = "sigma";
break;
case UNKOWN_TYPE_TEST:
default:
result = "unknown-type-test";
break;
}
return result;
}
/**
* \brief Permit to cast a string into a \b TypeTest, to
* cast a command line argument.
*
* \param[in] name The name of the process test the user wants to use.
* \return TypeTest The corresponding \b TypeTest object.
*/
TypeTest typeTestFromString(const std::string &name)
{
TypeTest result = UNKOWN_TYPE_TEST;
unsigned int count = static_cast<unsigned int>(COUNT_TYPE_TEST);
unsigned int id = 0;
bool hasNotFound = true;
while ((id < count) && hasNotFound) {
TypeTest temp = static_cast<TypeTest>(id);
if (typeTestToString(temp) == name) {
result = temp;
hasNotFound = false;
}
++id;
}
return result;
}
/**
* \brief Get the list of available \b TypeTest objects that are handled.
*
* \param[in] prefix The prefix that should be placed before the list.
* \param[in] sep The separator between each element of the list.
* \param[in] suffix The suffix that should terminate the list.
* \return std::string The list of handled type of process tests, presented as a string.
*/
std::string getAvailableTypeTest(const std::string &prefix = "<", const std::string &sep = " , ",
const std::string &suffix = ">")
{
std::string msg(prefix);
unsigned int count = static_cast<unsigned int>(COUNT_TYPE_TEST);
unsigned int lastId = count - 1;
for (unsigned int i = 0; i < lastId; i++) {
msg += typeTestToString(static_cast<TypeTest>(i)) + sep;
}
msg += typeTestToString(static_cast<TypeTest>(lastId)) + suffix;
return msg;
}
/**
* \brief Cast a number type into a string.
*
* \tparam T Type of number.
* \param[in] number The number to cast.
* \return std::string The corresponding string.
*/
template <typename T>
std::string numberToString(const T &number)
{
std::stringstream ss;
ss << number;
return ss.str();
}
/**
* \brief Cast a boolean into a string.
*
* \param[in] boolean The boolean to cast.
* \return std::string The corresponding string.
*/
std::string boolToString(const bool &boolean)
{
if (boolean) {
return "true";
}
else {
return "false";
}
}
/**
* \brief Write the WECO's rules used in the Shewhart's test in human readable format.
*
* \param[in] rules The array indicating which WECO's rules are used.
* \param[in] prefix The first character(s) delimiting the array in the string.
* \param[in] suffix The last character(s) delimiting the array in the string.
* \param[in] sep The separator character(s).
* \return std::string The corresponding string.
*/
std::string wecoRulesToString(const std::vector<bool> &rules, const std::string &prefix = "[", const std::string &suffix = "]", const std::string &sep = " , ")
{
std::string rulesAsString = prefix;
for (unsigned int i = 0; i < rules.size() - 1; ++i) {
if (rules[i]) {
rulesAsString += "ON";
}
else {
rulesAsString += "OFF";
}
rulesAsString += sep;
}
if (rules[rules.size() - 1]) {
rulesAsString += "ON";
}
else {
rulesAsString += "OFF";
}
rulesAsString += suffix;
return rulesAsString;
}
/**
* \brief Array that sets all the types of mean drift to deactivated.
*/
const bool CONST_ALL_ALARM_OFF[vpStatisticalTestAbstract::MEAN_DRIFT_COUNT] = { false, false, false, false };
/**
* \brief Array that sets all the types of mean drift to activated.
*/
const bool CONST_ALL_ALARM_ON[vpStatisticalTestAbstract::MEAN_DRIFT_COUNT] = { true, true, true, true };
/**
* \brief Cast a vector of string into an array of boolean activating / deactivating
* the mean drift alarms.
*
* \param[in] names The names of the alarms to set.
* \param[out] array The corresponding array of boolean.
*/
void vectorOfStringToMeanDriftTypeArray(const std::vector<std::string> &names, bool array[vpStatisticalTestAbstract::MEAN_DRIFT_COUNT])
{
std::memcpy(array, CONST_ALL_ALARM_OFF, vpStatisticalTestAbstract::MEAN_DRIFT_COUNT * sizeof(bool));
size_t nbNames = names.size();
for (size_t i = 0; i < nbNames; ++i) {
vpStatisticalTestAbstract::vpMeanDriftType alarmToActivate = vpStatisticalTestAbstract::vpMeanDriftTypeFromString(names[i]);
std::cout << "alarm[" << names[i] << "] (i.e. " << static_cast<unsigned int>(alarmToActivate) << ") set to true" << std::endl;
array[static_cast<unsigned int>(alarmToActivate)] = true;
if (alarmToActivate == vpStatisticalTestAbstract::MEAN_DRIFT_BOTH) {
array[vpStatisticalTestAbstract::MEAN_DRIFT_DOWNWARD] = true;
array[vpStatisticalTestAbstract::MEAN_DRIFT_UPWARD] = true;
}
}
if (array[vpStatisticalTestAbstract::MEAN_DRIFT_DOWNWARD] || array[vpStatisticalTestAbstract::MEAN_DRIFT_UPWARD]) {
array[vpStatisticalTestAbstract::MEAN_DRIFT_BOTH] = true;
}
}
/**
* \brief Cast an array of boolean (de)activating the mean drift alarms into
* the corresponding vector of strings.
*
* \param[in] array The array of boolean indicating which alarm are set.
* \return std::vector<std::string> The corresponding vector of names of alarms.
*/
std::vector<std::string> meanDriftArrayToVectorOfString(const bool array[vpStatisticalTestAbstract::MEAN_DRIFT_COUNT])
{
std::vector<std::string> listActivatedAlarms;
unsigned int nbTypeTests = static_cast<unsigned int>(vpStatisticalTestAbstract::MEAN_DRIFT_COUNT);
for (unsigned int id = 0; id < nbTypeTests; ++id) {
if (array[id]) {
vpStatisticalTestAbstract::vpMeanDriftType test = static_cast<vpStatisticalTestAbstract::vpMeanDriftType>(id);
std::string testName = vpStatisticalTestAbstract::vpMeanDriftTypeToString(test);
listActivatedAlarms.push_back(testName);
}
}
return listActivatedAlarms;
}
/**
* \brief Cast an array of boolean (de)activating the mean drift alarms into
* a single string listing all the alarms.
*
* \param[in] array The array of boolean indicating which alarm are set.
* \param[in] prefix The returned string prefix.
* \param[in] sep The returned string separator.
* \param[in] suffix The returned string suffix.
* \return std::string The corresponding string listing the names of alarms.
*/
std::string meanDriftArrayToString(const bool array[vpStatisticalTestAbstract::MEAN_DRIFT_COUNT],
const std::string &prefix = "[", const std::string &sep = " , ",
const std::string &suffix = "]")
{
std::vector<std::string> listActivatedAlarms = meanDriftArrayToVectorOfString(array);
std::string result = prefix;
size_t nbTestActivated = listActivatedAlarms.size();
if (nbTestActivated == 0) {
return prefix + " " + suffix;
}
for (size_t i = 0; i < nbTestActivated - 1; ++i) {
result += listActivatedAlarms[i] + sep;
}
result += listActivatedAlarms[nbTestActivated - 1] + suffix;
return result;
}
/**
* \brief Indicate how many alarms are set.
*
* \param[in] array The array of boolean indicating which alarms are set.
* \return unsigned int The number of alarms that are set.
*/
unsigned int meanDriftArrayToNbActivated(const bool array[vpStatisticalTestAbstract::MEAN_DRIFT_COUNT])
{
unsigned int nbActivated = 0;
unsigned int nbTypeAlarms = static_cast<unsigned int>(vpStatisticalTestAbstract::MEAN_DRIFT_COUNT);
for (unsigned int id = 0; id < nbTypeAlarms; ++id) {
if (array[id]) {
++nbActivated;
}
}
return nbActivated;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
//! [Structure_Parameters]
/**
* \brief Structure that contains the parameters of the different algorithms.
*/
typedef struct ParametersForAlgo
{
unsigned int m_test_nbsamples; /*!< Number of samples to compute the mean and stdev, common to all the algorithms.*/
bool m_test_activatedalarms[vpStatisticalTestAbstract::MEAN_DRIFT_COUNT]; /*!< Flag is true for a type of alarm that must be considered, false otherwise.*/
unsigned int m_test_nbactivatedalarms; /*!< Number of activated alarms.*/
float m_cusum_h; /*!< Alarm factor for the mean adjusted CUSUM test.*/
float m_cusum_k; /*!< Detection factor for the mean adjusted CUSUM test.*/
float m_ewma_alpha; /*!< Forgetting factor for the EWMA test.*/
float m_hinkley_alpha; /*!< Alarm threshold for the Hinkley's test. */
float m_hinkley_delta; /*!< Detection threshold for the Hinkley's test. */
bool m_hinkley_computealphadelta; /*!< If true, compute alpha and delta of the Hinkley's using the stdev of the signal.*/
float m_hinkley_h; /*!< Alarm factor permitting to compute alpha from the standard deviation of the signal.*/
float m_hinkley_k; /*!< Detection factor permitting to compute delta from the standard deviation of the signal.*/
bool m_shewhart_useWECO; /*!< If true, use the WECO rules for additional subtests for Shewhart's test.*/
std::vector<bool> m_shewhart_rules; /*!< Rules for the Shewart's test. True activate a WECO rule, false deactivate it.*/
float m_sigma_h; /*!< Alarm factor for the sigma test.*/
ParametersForAlgo()
: m_test_nbsamples(30)
, m_cusum_h(4.76f)
, m_cusum_k(1.f)
, m_ewma_alpha(0.1f)
, m_hinkley_alpha(4.76f)
, m_hinkley_delta(1.f)
, m_hinkley_computealphadelta(false)
, m_hinkley_h(4.76f)
, m_hinkley_k(1.f)
, m_shewhart_useWECO(false)
, m_sigma_h(3.f)
{
m_shewhart_rules = vpStatisticalTestShewhart::CONST_ALL_WECO_ACTIVATED;
memcpy(m_test_activatedalarms, CONST_ALL_ALARM_ON, vpStatisticalTestAbstract::MEAN_DRIFT_COUNT * sizeof(bool));
m_test_activatedalarms[vpStatisticalTestAbstract::MEAN_DRIFT_NONE] = false;
m_test_nbactivatedalarms = meanDriftArrayToNbActivated(m_test_activatedalarms);
}
}ParametersForAlgo;
//! [Structure_Parameters]
}
#endif // DOXYGEN_SHOULD_SKIP_THIS
int testOnSynthetic(const TutorialMeanDrift::TypeTest &type, const TutorialMeanDrift::ParametersForAlgo parameters,
const float &mean, const float &mean_drift, const float &stdev)
{
const float dt = 10.f; // Emulate a 10ms period
//! [Plot_Init]
vpPlot plotter(1);
plotter.initGraph(0, 1);
plotter.setTitle(0, "Evolution of the signal");
plotter.setUnitX(0, "Frame ID");
plotter.setUnitY(0, "No units");
//! [Plot_Init]
//! [Test_Creat]
unsigned int idFrame = 0;
vpStatisticalTestAbstract *p_test = nullptr;
switch (type) {
case TutorialMeanDrift::EWMA_TYPE_TEST:
p_test = new vpStatisticalTestEWMA(parameters.m_ewma_alpha);
break;
case TutorialMeanDrift::HINLKEY_TYPE_TEST:
p_test = new vpStatisticalTestHinkley(parameters.m_hinkley_alpha, parameters.m_hinkley_delta, parameters.m_test_nbsamples);
break;
case TutorialMeanDrift::MEAN_ADJUSTED_CUSUM_TYPE_TEST:
p_test = new vpStatisticalTestMeanAdjustedCUSUM(parameters.m_cusum_h, parameters.m_cusum_k, parameters.m_test_nbsamples);
break;
case TutorialMeanDrift::SHEWHART_TYPE_TEST:
p_test = new vpStatisticalTestShewhart(parameters.m_shewhart_useWECO, parameters.m_shewhart_rules, parameters.m_test_nbsamples);
break;
case TutorialMeanDrift::SIGMA_TYPE_TEST:
p_test = new vpStatisticalTestSigma(parameters.m_sigma_h, parameters.m_test_nbsamples);
break;
default:
throw(vpException(vpException::badValue, TutorialMeanDrift::typeTestToString(type) + " is not handled."));
break;
}
if ((type == TutorialMeanDrift::HINLKEY_TYPE_TEST) && parameters.m_hinkley_computealphadelta) {
// Initialization of Hinkley's test in automatic mode
delete p_test;
p_test = new vpStatisticalTestHinkley(parameters.m_hinkley_h, parameters.m_hinkley_k, true, parameters.m_test_nbsamples);
}
//! [Test_Creat]
float signal;
//! [Test_Init]
// Initial computation of the mean and stdev of the input signal
for (unsigned int i = 0; i < parameters.m_test_nbsamples; ++i) {
vpGaussRand rndGen(stdev, mean, static_cast<long>(idFrame * dt));
signal = static_cast<float>(rndGen());
p_test->testDownUpwardMeanDrift(signal);
++idFrame;
}
//! [Test_Init]
std::cout << "Estimated mean of the input signal: " << p_test->getMean() << std::endl;
std::cout << "Estimated stdev of the input signal: " << p_test->getStdev() << std::endl;
//! [Loop_Monitor]
float mean_eff = mean;
bool hasToRun = true;
vpStatisticalTestAbstract::vpMeanDriftType drift_type = vpStatisticalTestAbstract::MEAN_DRIFT_NONE;
while (hasToRun) {
vpGaussRand rndGen(stdev, mean_eff, static_cast<long>(idFrame * dt));
signal = static_cast<float>(rndGen());
plotter.plot(0, 0, idFrame - parameters.m_test_nbsamples, signal);
drift_type = p_test->testDownUpwardMeanDrift(signal);
if ((drift_type != vpStatisticalTestAbstract::MEAN_DRIFT_NONE) && (parameters.m_test_activatedalarms[drift_type])) {
hasToRun = false;
}
else {
mean_eff += mean_drift;
++idFrame;
}
}
//! [Loop_Monitor]
//! [Failure_Debrief]
std::cout << "Test failed at frame: " << idFrame - parameters.m_test_nbsamples << std::endl;
std::cout << "Type of mean drift: " << vpStatisticalTestAbstract::vpMeanDriftTypeToString(drift_type) << std::endl;
std::cout << "Last signal value: " << signal << std::endl;
if (type == TutorialMeanDrift::EWMA_TYPE_TEST) {
vpStatisticalTestEWMA *p_testEwma = dynamic_cast<vpStatisticalTestEWMA *>(p_test);
std::cout << "\tw(t) = " << p_testEwma->getWt() << std::endl;
}
else if (type == TutorialMeanDrift::MEAN_ADJUSTED_CUSUM_TYPE_TEST) {
vpStatisticalTestMeanAdjustedCUSUM *p_testCusum = dynamic_cast<vpStatisticalTestMeanAdjustedCUSUM *>(p_test);
std::cout << "\tLower cusum = " << p_testCusum->getTestSignalMinus() << std::endl;
std::cout << "\tUpper cusum = " << p_testCusum->getTestSignalPlus() << std::endl;
}
else if (type==TutorialMeanDrift::SHEWHART_TYPE_TEST) {
vpStatisticalTestShewhart *p_testShewhart = dynamic_cast<vpStatisticalTestShewhart *>(p_test);
std::vector<float> signal = p_testShewhart->getSignals();
size_t nbSignal = signal.size();
std::cout << "Signal history = [ ";
for (size_t i = 0; i < nbSignal; ++i) {
std::cout << signal[i] << " ";
}
std::cout << "]" << std::endl;
std::cout << "\tWECO alarm type = " << vpStatisticalTestShewhart::vpWecoRulesAlarmToString(p_testShewhart->getAlarm()) << std::endl;
}
else if (type == TutorialMeanDrift::HINLKEY_TYPE_TEST) {
vpStatisticalTestHinkley *p_hinkley = dynamic_cast<vpStatisticalTestHinkley *>(p_test);
float Mk = p_hinkley->getMk();
float Nk = p_hinkley->getNk();
float Sk = p_hinkley->getSk();
float Tk = p_hinkley->getTk();
std::cout << "S+(t) = " << Tk - Nk <<std::endl;
std::cout << "S-(t) = " << Mk - Sk <<std::endl;
}
float limitDown = 0.f, limitUp = 0.f;
p_test->getLimits(limitDown, limitUp);
std::cout << "\tLimit down = " << limitDown << std::endl;
std::cout << "\tLimit up = " << limitUp << std::endl;
//! [Failure_Debrief]
std::cout << "End of test on synthetic data. Press enter to leave." << std::endl;
std::cin.get();
delete p_test;
return EXIT_SUCCESS;
}
int main(int argc, char *argv[])
{
TutorialMeanDrift::TypeTest opt_typeTest = TutorialMeanDrift::MEAN_ADJUSTED_CUSUM_TYPE_TEST;
TutorialMeanDrift::ParametersForAlgo parameters;
float opt_mean = 6.f;
float opt_meandrift = 0.f;
float opt_stdev = 2.f;
int i = 1;
while (i < argc) {
if ((std::string(argv[i]) == "--test") && ((i + 1) < argc)) {
opt_typeTest = TutorialMeanDrift::typeTestFromString(argv[i + 1]);
++i;
}
else if ((std::string(argv[i]) == "--nb-samples") && ((i + 1) < argc)) {
parameters.m_test_nbsamples = std::atoi(argv[i + 1]);
++i;
}
else if ((std::string(argv[i]) == "--mean") && ((i + 1) < argc)) {
opt_mean = static_cast<float>(std::atof(argv[i + 1]));
++i;
}
else if ((std::string(argv[i]) == "--mean-drift") && ((i + 1) < argc)) {
opt_meandrift = static_cast<float>(std::atof(argv[i + 1]));
++i;
}
else if ((std::string(argv[i]) == "--stdev") && ((i + 1) < argc)) {
opt_stdev = static_cast<float>(std::atof(argv[i + 1]));
++i;
}
else if ((std::string(argv[i]) == "--alarms")) {
unsigned int nbArguments = 0;
std::vector<std::string> alarmNames;
bool hasNotFoundNextParams = true;
for (int j = 1; ((i + j) < argc) && hasNotFoundNextParams; ++j) {
std::string candidate(argv[i+j]);
if (candidate.find("--") != std::string::npos) {
// This is the next command line parameter
hasNotFoundNextParams = false;
}
else {
// This is a name
alarmNames.push_back(candidate);
++nbArguments;
}
}
TutorialMeanDrift::vectorOfStringToMeanDriftTypeArray(alarmNames, parameters.m_test_activatedalarms);
parameters.m_test_nbactivatedalarms = TutorialMeanDrift::meanDriftArrayToNbActivated(parameters.m_test_activatedalarms);
i += nbArguments;
}
else if ((std::string(argv[i]) == "--cusum-h") && ((i + 1) < argc)) {
parameters.m_cusum_h = static_cast<float>(std::atof(argv[i + 1]));
++i;
}
else if ((std::string(argv[i]) == "--cusum-k") && ((i + 1) < argc)) {
parameters.m_cusum_k = static_cast<float>(std::atof(argv[i + 1]));
++i;
}
else if ((std::string(argv[i]) == "--ewma-alpha") && ((i + 1) < argc)) {
parameters.m_ewma_alpha = static_cast<float>(std::atof(argv[i + 1]));
++i;
}
else if ((std::string(argv[i]) == "--hinkley-alpha") && ((i + 1) < argc)) {
parameters.m_hinkley_alpha = static_cast<float>(std::atof(argv[i + 1]));
++i;
}
else if ((std::string(argv[i]) == "--hinkley-delta") && ((i + 1) < argc)) {
parameters.m_hinkley_delta = static_cast<float>(std::atof(argv[i + 1]));
++i;
}
else if (std::string(argv[i]) == "--hinkley-compute") {
parameters.m_hinkley_computealphadelta = true;
}
else if ((std::string(argv[i]) == "--hinkley-h") && ((i + 1) < argc)) {
parameters.m_hinkley_h = static_cast<float>(std::atof(argv[i + 1]));
++i;
}
else if ((std::string(argv[i]) == "--hinkley-k") && ((i + 1) < argc)) {
parameters.m_hinkley_k = static_cast<float>(std::atof(argv[i + 1]));
++i;
}
else if ((std::string(argv[i]) == "--shewhart-rules") && (i + vpStatisticalTestShewhart::COUNT_WECO - 1 < argc)) {
for (int j = 0; j < vpStatisticalTestShewhart::COUNT_WECO - 1; ++j) {
std::string argument = std::string(argv[i + 1 + j]);
if ((argument.find("on") != std::string::npos) || (argument.find("ON") != std::string::npos)) {
parameters.m_shewhart_rules[j] = true;
}
else {
parameters.m_shewhart_rules[j] = false;
}
}
i += vpStatisticalTestShewhart::COUNT_WECO - 1;
}
else if (std::string(argv[i]) == "--shewhart-weco") {
parameters.m_shewhart_useWECO = true;
}
else if ((std::string(argv[i]) == "--sigma-h") && ((i + 1) < argc)) {
parameters.m_sigma_h = static_cast<float>(std::atof(argv[i + 1]));
++i;
}
else if ((std::string(argv[i]) == "--help") || (std::string(argv[i]) == "-h")) {
std::cout << "\nSYNOPSIS " << std::endl
<< argv[0]
<< " [--test <type>]"
<< " [--nb-samples <value>]"
<< " [--alarms <name_1 ... name_n>]"
<< " [--mean <value>]"
<< " [--mean-drift <value>]"
<< " [--stdev <value>]"
<< " [--cusum-h <value>]"
<< " [--cusum-k <value>]"
<< " [--ewma-alpha <value ]0; 1[>]"
<< " [--hinkley-alpha <]0; inf[>]"
<< " [--hinkley-delta <]0; inf[>]"
<< " [--hinkley-compute]"
<< " [--hinkley-h <]0; inf[>]"
<< " [--hinkley-k <]0; inf[>]"
<< " [--shewhart-rules <3-sigma:{on|off} 2-sigma:{on|off} 1-sigma:{on|off} same-side:{on|off}>"
<< " [--shewhart-weco]"
<< " [--sigma-h <value>]"
<< " [--help,-h]" << std::endl;
std::cout << "\nOPTIONS " << std::endl
<< " --test <type-name>" << std::endl
<< " Type of test to perform on the data." << std::endl
<< " Available values: " << TutorialMeanDrift::getAvailableTypeTest() << std::endl
<< std::endl
<< " --nb-samples <value>" << std::endl
<< " Number of samples to compute the mean and standard deviation of the monitored signal." << std::endl
<< " Default: " << parameters.m_test_nbsamples << std::endl
<< std::endl
<< " --alarms <name_1 .. name_n>" << std::endl
<< " Set the mean drift alarms to monitor." << std::endl
<< " Default: " << TutorialMeanDrift::meanDriftArrayToString(parameters.m_test_activatedalarms) << std::endl
<< " Available: " << vpStatisticalTestAbstract::getAvailableMeanDriftType() << std::endl
<< std::endl
<< " --mean <value>" << std::endl
<< " Mean of the signal." << std::endl
<< " Default: " << opt_mean<< std::endl
<< std::endl
<< " --mean-drift <value>" << std::endl
<< " Mean drift for the synthetic data." << std::endl
<< " Default: " << opt_meandrift << std::endl
<< std::endl
<< " --stdev <value>" << std::endl
<< " Standard deviation of the signal." << std::endl
<< " Default: " << opt_stdev << std::endl
<< std::endl
<< " --cusum-h <value>" << std::endl
<< " The alarm factor that permits to the CUSUM test to determine when the process is out of control" << std::endl
<< " from the standard deviation of the signal." << std::endl
<< " Default: " << parameters.m_cusum_h << std::endl
<< std::endl
<< " --cusum-k <value>" << std::endl
<< " The factor that permits to determine the slack of the CUSUM test, " << std::endl
<< " i.e. the minimum value of the jumps we want to detect, from the standard deviation of the signal." << std::endl
<< " Default: " << parameters.m_cusum_k << std::endl
<< std::endl
<< " --ewma-alpha <value ]0; 1[>" << std::endl
<< " Forgetting factor for the Exponential Weighted Moving Average (EWMA)." << std::endl
<< " Default: " << parameters.m_ewma_alpha << std::endl
<< std::endl
<< " --hinkley-alpha <value ]0; inf[>" << std::endl
<< " The alarm threshold indicating that a mean drift occurs for the Hinkley's test." << std::endl
<< " Default: " << parameters.m_hinkley_alpha << std::endl
<< std::endl
<< " --hinkley-delta <value>" << std::endl
<< " Detection threshold indicating minimal magnitude we want to detect for the Hinkley's test." << std::endl
<< " Default: " << parameters.m_hinkley_delta << std::endl
<< std::endl
<< " --hinkley-compute" << std::endl
<< " If set, the Hinkley's test will compute the alarm and detection thresholds" << std::endl
<< " from the standard deviation of the input signal." << std::endl
<< " Default: disabled" << std::endl
<< std::endl
<< " --hinkley-h <value>" << std::endl
<< " Alarm factor permitting to compute the alarm threshold for the Hinkley's test." << std::endl
<< " Default: " << parameters.m_hinkley_h << std::endl
<< std::endl
<< " --hinkley-k <value>" << std::endl
<< " Detection factor permitting to compute the Detection threshold for the Hinkley's test." << std::endl
<< " Default: " << parameters.m_hinkley_k << std::endl
<< std::endl
<< " --shewhart-rules <3-sigma:{on|off} 2-sigma:{on|off} 1-sigma:{on|off} same-side:{on|off}>" << std::endl
<< " Choose the WECO additional tests for the Shewhart's test to use. To activate them, --shewart-weco must be used." << std::endl
<< " Default: ON ON ON ON" << std::endl
<< std::endl
<< " --shewhart-weco" << std::endl
<< " Activate the WECO additional tests for the Shewhart's test." << std::endl
<< " Default: deactivated" << std::endl
<< std::endl
<< " --sigma-h <value>" << std::endl
<< " The alarm factor of the sigma test." << std::endl
<< " Default: " << parameters.m_sigma_h << std::endl
<< std::endl
<< " --help, -h" << std::endl
<< " Display this helper message." << std::endl
<< std::endl;
return EXIT_SUCCESS;
}
else {
std::cout << "\nERROR " << std::endl << " Unknown option " << argv[i] << std::endl;
return EXIT_FAILURE;
}
++i;
}
if (parameters.m_test_nbactivatedalarms == 0) {
throw(vpException(vpException::badValue, "Error, at least one type of alarm must be monitored. See " + std::string(argv[0]) + " --help"));
return EXIT_FAILURE;
}
std::cout << " Activated statistical test : " << TutorialMeanDrift::typeTestToString(opt_typeTest) << std::endl;
std::cout << " Activated alarms : " << TutorialMeanDrift::meanDriftArrayToString(parameters.m_test_activatedalarms) << std::endl;
std::cout << " Nb samples for statistics computation: " << parameters.m_test_nbsamples << std::endl;
std::cout << " Alarm factor CUSUM test : " << (opt_typeTest == TutorialMeanDrift::MEAN_ADJUSTED_CUSUM_TYPE_TEST ? TutorialMeanDrift::numberToString(parameters.m_cusum_h) : "N/A") << std::endl;
std::cout << " Detection factor CUSUM test : " << (opt_typeTest == TutorialMeanDrift::MEAN_ADJUSTED_CUSUM_TYPE_TEST ? TutorialMeanDrift::numberToString(parameters.m_cusum_k) : "N/A") << std::endl;
std::cout << " Forgetting factor EWMA test : " << (opt_typeTest == TutorialMeanDrift::EWMA_TYPE_TEST ? TutorialMeanDrift::numberToString(parameters.m_ewma_alpha) : "N/A") << std::endl;
std::cout << " Alarm threshold Hinkley's test : " << ((opt_typeTest == TutorialMeanDrift::HINLKEY_TYPE_TEST) && (!parameters.m_hinkley_computealphadelta) ? TutorialMeanDrift::numberToString(parameters.m_hinkley_alpha) : "N/A") << std::endl;
std::cout << " Detection threshold Hinkley's test : " << ((opt_typeTest == TutorialMeanDrift::HINLKEY_TYPE_TEST) && (!parameters.m_hinkley_computealphadelta) ? TutorialMeanDrift::numberToString(parameters.m_hinkley_delta) : "N/A") << std::endl;
std::cout << " Alarm factor Hinkley's test : " << ((opt_typeTest == TutorialMeanDrift::HINLKEY_TYPE_TEST) && parameters.m_hinkley_computealphadelta ? TutorialMeanDrift::numberToString(parameters.m_hinkley_h) : "N/A") << std::endl;
std::cout << " Detection factor Hinkley's test : " << ((opt_typeTest == TutorialMeanDrift::HINLKEY_TYPE_TEST) && parameters.m_hinkley_computealphadelta ? TutorialMeanDrift::numberToString(parameters.m_hinkley_k) : "N/A") << std::endl;
std::cout << " Shewhart's test set of WECO rules : " << (parameters.m_shewhart_useWECO && (opt_typeTest == TutorialMeanDrift::SHEWHART_TYPE_TEST) ? TutorialMeanDrift::wecoRulesToString(parameters.m_shewhart_rules) : "N/A") << std::endl;
std::cout << " Shewhart's test use WECO rules : " << (opt_typeTest == TutorialMeanDrift::SHEWHART_TYPE_TEST ? TutorialMeanDrift::boolToString(parameters.m_shewhart_useWECO && (opt_typeTest == TutorialMeanDrift::SHEWHART_TYPE_TEST)) : "N/A") << std::endl;
std::cout << " Alarm factor Sigma test : " << (opt_typeTest == TutorialMeanDrift::SIGMA_TYPE_TEST ? TutorialMeanDrift::numberToString(parameters.m_sigma_h) : "N/A") << std::endl;
std::cout << " Actual mean of the input signal: " << opt_mean << std::endl;
std::cout << " Actual stdev of the input signal: " << opt_stdev << std::endl;
std::cout << " Mean drift of the input signal: " << opt_meandrift << std::endl;
return testOnSynthetic(opt_typeTest, parameters, opt_mean, opt_meandrift, opt_stdev);
}
#else
int main()
{
std::cerr << "Recompile ViSP with display capabilities in order to use this tutorial." << std::endl;
return EXIT_FAILURE;
}
#endif
|