1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
|
/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2025 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
//! \example tutorial-pf-curve-fitting-all.cpp
// System includes
#include <algorithm>
#include <vector>
// ViSP includes
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpException.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpMouseButton.h>
#include <visp3/core/vpTime.h>
#ifdef VISP_HAVE_DISPLAY
#include <visp3/gui/vpPlot.h>
#endif
//! [Include_PF]
#include <visp3/core/vpParticleFilter.h>
//! [Include_PF]
#include "vpTutoCommonData.h"
#include "vpTutoMeanSquareFitting.h"
#include "vpTutoParabolaModel.h"
#include "vpTutoSegmentation.h"
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11) && defined(VISP_HAVE_DISPLAY)
#ifndef DOXYGEN_SHOULD_SKIP_THIS
namespace tutorial
{
//! [Evaluation_functions]
/**
* \brief Compute the square error between the parabola model and
* the input point \b pt.
*
* \param[in] pt The input point.
* \param[in] model Parabola model.
* \return double The square error.
*/
double evaluate(const vpImagePoint &pt, const vpTutoParabolaModel &model)
{
double u = pt.get_u();
double v = pt.get_v();
double v_model = model.eval(u);
double error = v - v_model;
double squareError = error * error;
return squareError;
}
/**
* \brief Compute the mean-square error between the parabola model and
* the input points \b pts.
*
* \param[in] coeffs The coefficients of the polynomial.
* \param[in] height The height of the input image.
* \param[in] width The width of the input image.
* \param[in] pts The input points.
* \return double The root mean square error.
*/
double evaluate(const vpColVector &coeffs, const unsigned int &height, const unsigned int &width, const std::vector<vpImagePoint> &pts)
{
unsigned int nbPts = static_cast<unsigned int>(pts.size());
vpColVector residuals(nbPts);
vpColVector weights(nbPts, 1.);
vpTutoParabolaModel model(coeffs, height, width);
// Compute the residuals
for (unsigned int i = 0; i < nbPts; ++i) {
double squareError = evaluate(pts[i], model);
residuals[i] = squareError;
}
double meanSquareError = residuals.sum() / static_cast<double>(nbPts);
return std::sqrt(meanSquareError);
}
//! [Evaluation_functions]
//! [Display_function]
/**
* \brief Display the fitted parabola on the image.
*
* \tparam T Either unsigned char or vpRGBa.
* \param[in] coeffs The coefficients of the parabola, such as coeffs[0] = a coeffs[1] = b coeffs[2] = c
* \param[in] I The image on which we want to display the parabola model.
* \param[in] color The color we want to use to display the parabola.
*/
template<typename T>
void display(const vpColVector &coeffs, const vpImage<T> &I, const vpColor &color,
const unsigned int &vertPosLegend, const unsigned int &horPosLegend)
{
#if defined(VISP_HAVE_DISPLAY)
unsigned int width = I.getWidth();
vpTutoParabolaModel model(coeffs, I.getHeight(), I.getWidth());
for (unsigned int u = 0; u < width; ++u) {
unsigned int v = static_cast<unsigned int>(model.eval(u));
vpDisplay::displayPoint(I, v, u, color, 1);
vpDisplay::displayText(I, vertPosLegend, horPosLegend, "Particle Filter model", color);
}
#else
(void)coeffs;
(void)I;
(void)color;
(void)vertPosLegend;
(void)horPosLegend;
#endif
}
//! [Display_function]
//! [Initialization_function]
/**
* \brief Select automatically the init points from the segmented image.
*
* \param[in] data The data common to the whole program.
* \return std::vector<vpImagePoint> The vector of image points to use to initialize
* the Particle Filter using a Least Mean Square minimization.
*/
std::vector<vpImagePoint> automaticInitialization(tutorial::vpTutoCommonData &data)
{
// Initialization-related variables
const unsigned int minNbPts = data.m_degree + 1;
const unsigned int nbPtsToUse = 10 * minNbPts;
std::vector<vpImagePoint> initPoints;
// Perform HSV segmentation
tutorial::performSegmentationHSV(data);
// Extracting the skeleton of the mask
std::vector<vpImagePoint> edgePoints = tutorial::extractSkeleton(data);
unsigned int nbEdgePoints = static_cast<unsigned int>(edgePoints.size());
if (nbEdgePoints < nbPtsToUse) {
return edgePoints;
}
// Uniformly extract init points
auto ptHasLowerU = [](const vpImagePoint &ptA, const vpImagePoint &ptB) {
return ptA.get_u() < ptB.get_u();
};
std::sort(edgePoints.begin(), edgePoints.end(), ptHasLowerU);
unsigned int idStart, idStop;
if (nbEdgePoints > nbPtsToUse + 20) {
// Avoid extreme points in case it's noise
idStart = 10;
idStop = static_cast<unsigned int>(edgePoints.size()) - 10;
}
else {
// We need to take all the points because we don't have enough
idStart = 0;
idStop = static_cast<unsigned int>(edgePoints.size());
}
// Sample uniformly the points starting from the left of the image to the right
unsigned int sizeWindow = idStop - idStart + 1;
unsigned int step = sizeWindow / (nbPtsToUse - 1);
for (unsigned int id = idStart; id <= idStop; id += step) {
initPoints.push_back(edgePoints[id]);
}
return initPoints;
}
/**
* \brief Get the init points by user-interaction.
*
* \param[in] data The data common to the whole program.
* \return std::vector<vpImagePoint> The vector that contains the init points.
*/
std::vector<vpImagePoint> manualInitialization(const tutorial::vpTutoCommonData &data)
{
// Interaction variables
const bool waitForClick = true;
vpImagePoint ipClick;
vpMouseButton::vpMouseButtonType button;
// Display variables
const unsigned int sizeCross = 10;
const unsigned int thicknessCross = 2;
const vpColor colorCross = vpColor::red;
// Initialization-related variables
const unsigned int minNbPts = data.m_degree + 1;
std::vector<vpImagePoint> initPoints;
bool notEnoughPoints = true;
while (notEnoughPoints) {
// Initial display of the images
vpDisplay::display(data.m_I_orig);
// Display the how-to
vpDisplay::displayText(data.m_I_orig, data.m_ipLegend, "Left click to add init point (min.: " + std::to_string(minNbPts) + "), right click to estimate the initial coefficients of the Particle Filter.", data.m_colorLegend);
vpDisplay::displayText(data.m_I_orig, data.m_ipLegend + data.m_legendOffset, "A middle click reinitialize the list of init points.", data.m_colorLegend);
vpDisplay::displayText(data.m_I_orig, data.m_ipLegend + data.m_legendOffset + data.m_legendOffset, "If not enough points have been selected, a right click has no effect.", data.m_colorLegend);
// Display the already selected points
unsigned int nbInitPoints = static_cast<unsigned int>(initPoints.size());
for (unsigned int i = 0; i < nbInitPoints; ++i) {
vpDisplay::displayCross(data.m_I_orig, initPoints[i], sizeCross, colorCross, thicknessCross);
}
// Update the display
vpDisplay::flush(data.m_I_orig);
// Get the user input
vpDisplay::getClick(data.m_I_orig, ipClick, button, waitForClick);
// Either add the clicked point to the list of initial points or stop the loop if enough points are available
switch (button) {
case vpMouseButton::vpMouseButtonType::button1:
initPoints.push_back(ipClick);
break;
case vpMouseButton::vpMouseButtonType::button2:
initPoints.clear();
break;
case vpMouseButton::vpMouseButtonType::button3:
(initPoints.size() >= minNbPts ? notEnoughPoints = false : notEnoughPoints = true);
break;
default:
break;
}
}
return initPoints;
}
/**
* \brief Compute the initial guess of the state for the Particle Filter
* using Least-Mean-Square minimization.
*
* \param[in] data The data used in the tutorial.
* \return vpColVector The vector containing the coefficients, used as initial guess,
* of the parabola.
*/
vpColVector computeInitialGuess(tutorial::vpTutoCommonData &data)
{
// Vector that contains the init points
std::vector<vpImagePoint> initPoints;
#ifdef VISP_HAVE_DISPLAY
// Interaction variables
const bool waitForClick = true;
vpImagePoint ipClick;
vpMouseButton::vpMouseButtonType button;
// Display variables
const unsigned int sizeCross = 10;
const unsigned int thicknessCross = 2;
const vpColor colorCross = vpColor::red;
bool automaticInit = false;
// Initial display of the images
vpDisplay::display(data.m_I_orig);
vpDisplay::displayText(data.m_I_orig, data.m_ipLegend, "Left click to manually select the init points, right click to automatically initialize the PF", data.m_colorLegend);
// Update the display
vpDisplay::flush(data.m_I_orig);
// Get the user input
vpDisplay::getClick(data.m_I_orig, ipClick, button, waitForClick);
// Either use the automatic initialization or the manual one depending on the user input
switch (button) {
case vpMouseButton::vpMouseButtonType::button1:
automaticInit = false;
break;
case vpMouseButton::vpMouseButtonType::button3:
automaticInit = true;
break;
default:
break;
}
if (automaticInit) {
// Get automatically the init points from the segmented image
initPoints = tutorial::automaticInitialization(data);
}
else {
// Get manually the init points from the original image
initPoints = tutorial::manualInitialization(data);
}
#else
// Get the init points from the segmented image
initPoints = tutorial::automaticInitialization(data);
#endif
// Compute the coefficients of the parabola using Least-Mean-Square minimization.
tutorial::vpTutoMeanSquareFitting lmsFitter(data.m_degree, data.m_I_orig.getHeight(), data.m_I_orig.getWidth());
lmsFitter.fit(initPoints);
vpColVector X0 = lmsFitter.getCoeffs();
std::cout << "---[Initial fit]---" << std::endl;
std::cout << lmsFitter.getModel();
std::cout << "---[Initial fit]---" << std::endl;
// Display info about the initialization
vpDisplay::display(data.m_I_orig);
vpDisplay::displayText(data.m_I_orig, data.m_ipLegend, "Here are the points selected for the initialization.", data.m_colorLegend);
size_t nbInitPoints = initPoints.size();
for (size_t i = 0; i < nbInitPoints; ++i) {
const vpImagePoint &ip = initPoints[i];
vpDisplay::displayCross(data.m_I_orig, ip, sizeCross, colorCross, thicknessCross);
}
// Update display and wait for click
lmsFitter.display(data.m_I_orig, vpColor::red, static_cast<unsigned int>(data.m_ipLegend.get_v() + 2 * data.m_legendOffset.get_v()), static_cast<unsigned int>(data.m_ipLegend.get_u()));
vpDisplay::displayText(data.m_I_orig, data.m_ipLegend + data.m_legendOffset, "A click to continue.", data.m_colorLegend);
vpDisplay::flush(data.m_I_orig);
vpDisplay::getClick(data.m_I_orig, waitForClick);
return X0;
}
//! [Initialization_function]
//! [Process_function]
vpColVector fx(const vpColVector &coeffs, const double &/*dt*/)
{
vpColVector updatedCoeffs = coeffs; // We use a constant position model
return updatedCoeffs;
}
//! [Process_function]
//! [Average_functor]
class vpTutoAverageFunctor
{
public:
vpTutoAverageFunctor(const unsigned int °ree, const unsigned int &height, const unsigned int &width)
: m_degree(degree)
, m_height(height)
, m_width(width)
{ }
/**
* \brief Compute the "weighted average" of polynomial models, by sampling control points and
* then performing Least-Mean Square minimization to best fit the control points.
*
* \param[in] particles The vector containing the particles of the PF.
* \param[in] weights Their associated weights
*
* \return vpColVector The coefficients of the polynomial model that best fits the control points.
*/
vpColVector averagePolynomials(const std::vector<vpColVector> &particles, const std::vector<double> &weights, const vpParticleFilter<std::vector<vpImagePoint>>::vpStateAddFunction &/**/)
{
const unsigned int nbParticles = static_cast<unsigned int>(particles.size());
const double nbParticlesAsDOuble = static_cast<double>(nbParticles);
// Compute the sum of the weights to be able to determine the "importance" of a particle with regard to the whole set
const double sumWeight = std::accumulate(weights.begin(), weights.end(), 0.);
// Defining the total number of control points we want to generate
const double nbPointsForAverage = 10. * nbParticlesAsDOuble;
std::vector<vpImagePoint> initPoints;
// Creating control points by each particle
for (unsigned int i = 0; i < nbParticles; ++i) {
// The number of control points a particle can generate is proportional to the ratio of its weight w.r.t. the sum of the weights
double nbPoints = std::floor(weights[i] * nbPointsForAverage / sumWeight);
if (nbPoints > 1.) {
// The particle has a weight high enough to deserve more than one points
vpTutoParabolaModel curve(particles[i], m_height, m_width);
double widthAsDouble = static_cast<double>(m_width);
// Uniform sampling of the control points along the polynomial model
double step = widthAsDouble / (nbPoints - 1.);
for (double u = 0.; u < widthAsDouble; u += step) {
double v = curve.eval(u);
vpImagePoint pt(v, u);
initPoints.push_back(pt);
}
}
else if (vpMath::equal(nbPoints, 1.)) {
// The weight of the particle make it have only one control point
// We sample it at the middle of the image
vpTutoParabolaModel curve(particles[i], m_height, m_width);
double u = static_cast<double>(m_width) / 2.;
double v = curve.eval(u);
vpImagePoint pt(v, u);
initPoints.push_back(pt);
}
}
// We use Least-Mean Square minimization to compute the polynomial model that best fits all the control points
vpTutoMeanSquareFitting lms(m_degree, m_height, m_width);
lms.fit(initPoints);
return lms.getCoeffs();
}
private:
unsigned int m_degree; //!< The degree of the polynomial.
unsigned int m_height; //!< The height of the input image.
unsigned int m_width; //!< The width of the input image.
};
//! [Average_functor]
//! [Likelihood_functor]
class vpTutoLikelihoodFunctor
{
public:
/**
* @brief Construct a new vp Likelihood Functor object
*
* \param[in] stdev The standard deviation of the likelihood function.
* \param[in] height The height of the input image.
* \param[in] width The width of the input image.
*/
vpTutoLikelihoodFunctor(const double &stdev, const unsigned int &height, const unsigned int &width)
: m_height(height)
, m_width(width)
{
double sigmaDistanceSquared = stdev * stdev;
m_constantDenominator = 1. / std::sqrt(2. * M_PI * sigmaDistanceSquared);
m_constantExpDenominator = -1. / (2. * sigmaDistanceSquared);
}
//! [Likelihood_function]
/**
* \brief Compute the likelihood of a particle compared to the measurements.
* The likelihood equals zero if the particle is completely different of
* the measurements and equals one if it matches completely.
* The chosen likelihood is a Gaussian function that penalizes the mean distance
* between the projection of the markers corresponding to the particle position
* and the measurements of the markers in the image.
*
* \param[in] coeffs The particle, which represent the parabola coefficients.
* \param[in] meas The measurement vector.
* \return double The likelihood of the particle.
*/
double likelihood(const vpColVector &coeffs, const std::vector<vpImagePoint> &meas)
{
double likelihood = 0.;
unsigned int nbPoints = static_cast<unsigned int>(meas.size());
// Generate a model from the coefficients stored in the particle state
vpTutoParabolaModel model(coeffs, m_height, m_width);
// Compute the residual between each measurement point and its equivalent in the model
vpColVector residuals(nbPoints);
for (unsigned int i = 0; i < nbPoints; ++i) {
double squareError = tutorial::evaluate(meas[i], model);
residuals[i] = squareError;
}
// Use Tukey M-estimator to be robust against outliers
vpRobust Mestimator;
vpColVector w(nbPoints, 1.);
Mestimator.MEstimator(vpRobust::TUKEY, residuals, w);
double sumError = w.hadamard(residuals).sum();
// Compute the likelihood as a Gaussian function
likelihood = std::exp(m_constantExpDenominator * sumError / w.sum()) * m_constantDenominator;
likelihood = std::min(likelihood, 1.0); // Clamp to have likelihood <= 1.
likelihood = std::max(likelihood, 0.); // Clamp to have likelihood >= 0.
return likelihood;
}
//! [Likelihood_function]
private:
double m_constantDenominator; //!< Denominator of the Gaussian function used for the likelihood computation.
double m_constantExpDenominator; //!< Denominator of the exponential of the Gaussian function used for the likelihood computation.
unsigned int m_height; //!< The height of the input image.
unsigned int m_width; //!< The width of the input image.
};
//! [Likelihood_functor]
}
#endif
int main(const int argc, const char *argv[])
{
tutorial::vpTutoCommonData data;
int returnCode = data.init(argc, argv);
if (returnCode != tutorial::vpTutoCommonData::SOFTWARE_CONTINUE) {
return returnCode;
}
tutorial::vpTutoMeanSquareFitting lmsFitter(data.m_degree, data.m_I_orig.getHeight(), data.m_I_orig.getWidth());
const unsigned int vertOffset = static_cast<unsigned int>(data.m_legendOffset.get_i());
const unsigned int horOffset = static_cast<unsigned int>(data.m_ipLegend.get_j());
const unsigned int legendLmsVert = data.m_I_orig.getHeight() - 3 * vertOffset;
const unsigned int legendLmsHor = horOffset;
const unsigned int legendPFVert = data.m_I_orig.getHeight() - 2 * vertOffset, legendPFHor = horOffset;
// Initialize the attributes of the PF
//! [Initial_estimates]
vpColVector X0 = tutorial::computeInitialGuess(data);
//! [Initial_estimates]
//! [Constants_for_the_PF]
const double maxDistanceForLikelihood = data.m_pfMaxDistanceForLikelihood; // The maximum allowed distance between a particle and the measurement, leading to a likelihood equal to 0..
const double sigmaLikelihood = maxDistanceForLikelihood / 3.; // The standard deviation of likelihood function.
const unsigned int nbParticles = data.m_pfN; // Number of particles to use
std::vector<double> stdevsPF; // Standard deviation for each state component
for (unsigned int i = 0; i < data.m_degree + 1; ++i) {
double ampliMax = data.m_pfRatiosAmpliMax[i] * X0[i];
stdevsPF.push_back(ampliMax / 3.);
}
unsigned long seedPF; // Seed for the random generators of the PF
const float period = 33.3f; // 33.3ms i.e. 30Hz
if (data.m_pfSeed < 0) {
seedPF = static_cast<unsigned long>(vpTime::measureTimeMicros());
}
else {
seedPF = data.m_pfSeed;
}
const int nbThread = data.m_pfNbThreads;
//! [Constants_for_the_PF]
//! [Init_functions]
vpParticleFilter<std::vector<vpImagePoint>>::vpProcessFunction processFunc = tutorial::fx;
tutorial::vpTutoLikelihoodFunctor likelihoodFtor(sigmaLikelihood, data.m_I_orig.getHeight(), data.m_I_orig.getWidth());
using std::placeholders::_1;
using std::placeholders::_2;
vpParticleFilter<std::vector<vpImagePoint>>::vpLikelihoodFunction likelihoodFunc = std::bind(&tutorial::vpTutoLikelihoodFunctor::likelihood, &likelihoodFtor, _1, _2);
vpParticleFilter<std::vector<vpImagePoint>>::vpResamplingConditionFunction checkResamplingFunc = vpParticleFilter<std::vector<vpImagePoint>>::simpleResamplingCheck;
vpParticleFilter<std::vector<vpImagePoint>>::vpResamplingFunction resamplingFunc = vpParticleFilter<std::vector<vpImagePoint>>::simpleImportanceResampling;
tutorial::vpTutoAverageFunctor averageCpter(data.m_degree, data.m_I_orig.getHeight(), data.m_I_orig.getWidth());
using std::placeholders::_3;
vpParticleFilter<std::vector<vpImagePoint>>::vpFilterFunction meanFunc = std::bind(&tutorial::vpTutoAverageFunctor::averagePolynomials, &averageCpter, _1, _2, _3);
//! [Init_functions]
//! [Init_PF]
// Initialize the PF
vpParticleFilter<std::vector<vpImagePoint>> filter(nbParticles, stdevsPF, seedPF, nbThread);
filter.init(X0, processFunc, likelihoodFunc, checkResamplingFunc, resamplingFunc, meanFunc);
//! [Init_PF]
//! [Init_plot]
#ifdef VISP_HAVE_DISPLAY
unsigned int plotHeight = 350, plotWidth = 350;
int plotXpos = static_cast<int>(data.m_legendOffset.get_u());
int plotYpos = static_cast<int>(data.m_I_orig.getHeight() + 4. * data.m_legendOffset.get_v());
vpPlot plot(1, plotHeight, plotWidth, plotXpos, plotYpos, "Root mean-square error");
plot.initGraph(0, 2);
plot.setLegend(0, 0, "LMS estimator");
plot.setColor(0, 0, vpColor::gray);
plot.setLegend(0, 1, "PF estimator");
plot.setColor(0, 1, vpColor::red);
#endif
//! [Init_plot]
bool run = true;
unsigned int nbIter = 0;
double meanDtLMS = 0., meanDtPF = 0.;
double meanRootMeanSquareErrorLMS = 0., meanRootMeanSquareErrorPF = 0.;
while (!data.m_grabber.end() && run) {
std::cout << "Iter " << nbIter << std::endl;
data.m_grabber.acquire(data.m_I_orig);
tutorial::performSegmentationHSV(data);
/// Extracting the skeleton of the mask
std::vector<vpImagePoint> edgePoints = tutorial::extractSkeleton(data);
/// Simulate sensor noise
std::vector<vpImagePoint> noisyEdgePoints = tutorial::addSaltAndPepperNoise(edgePoints, data);
#ifdef VISP_HAVE_DISPLAY
/// Initial display of the images
vpDisplay::display(data.m_I_orig);
vpDisplay::display(data.m_I_segmented);
vpDisplay::display(data.m_IskeletonNoisy);
#endif
/// Fit using least-square
double tLms = vpTime::measureTimeMs();
lmsFitter.fit(noisyEdgePoints);
double dtLms = vpTime::measureTimeMs() - tLms;
double lmsRootMeanSquareError = lmsFitter.evaluate(edgePoints);
std::cout << " [Least-Mean Square method] " << std::endl;
std::cout << " Coeffs = [" << lmsFitter.getCoeffs().transpose() << " ]" << std::endl;
std::cout << " Root Mean Square Error = " << lmsRootMeanSquareError << " pixels" << std::endl;
std::cout << " Fitting duration = " << dtLms << " ms" << std::endl;
meanDtLMS += dtLms;
meanRootMeanSquareErrorLMS += lmsRootMeanSquareError;
/// Use the PF to filter the measurement
double tPF = vpTime::measureTimeMs();
//! [Perform_filtering]
filter.filter(noisyEdgePoints, period);
//! [Perform_filtering]
double dtPF = vpTime::measureTimeMs() - tPF;
//! [Get_filtered_state]
vpColVector Xest = filter.computeFilteredState();
//! [Get_filtered_state]
//! [Evaluate_performances]
double pfError = tutorial::evaluate(Xest, data.m_I_orig.getHeight(), data.m_I_orig.getWidth(), edgePoints);
//! [Evaluate_performances]
std::cout << " [Particle Filter method] " << std::endl;
std::cout << " Coeffs = [" << Xest.transpose() << " ]" << std::endl;
std::cout << " Root Mean Square Error = " << pfError << " pixels" << std::endl;
std::cout << " Fitting duration = " << dtPF << " ms" << std::endl;
meanDtPF += dtPF;
meanRootMeanSquareErrorPF += pfError;
#ifdef VISP_HAVE_DISPLAY
// Update image overlay
lmsFitter.display<unsigned char>(data.m_IskeletonNoisy, vpColor::gray, legendLmsVert, legendLmsHor);
tutorial::display(Xest, data.m_IskeletonNoisy, vpColor::red, legendPFVert, legendPFHor);
// Update plot
plot.plot(0, 0, nbIter, lmsRootMeanSquareError);
plot.plot(0, 1, nbIter, pfError);
// Display the images with overlayed info
data.displayLegend(data.m_I_orig);
vpDisplay::flush(data.m_I_orig);
vpDisplay::flush(data.m_I_segmented);
vpDisplay::flush(data.m_IskeletonNoisy);
run = data.manageClicks(data.m_I_orig, data.m_stepbystep);
#endif
++nbIter;
}
double iterAsDouble = static_cast<double>(nbIter);
std::cout << std::endl << std::endl << "-----[Statistics summary]-----" << std::endl;
std::cout << " [LMS method] " << std::endl;
std::cout << " Average Root Mean Square Error = " << meanRootMeanSquareErrorLMS / iterAsDouble << " pixels" << std::endl;
std::cout << " Average fitting duration = " << meanDtLMS / iterAsDouble << " ms" << std::endl;
std::cout << " [Particle Filter method] " << std::endl;
std::cout << " Average Root Mean Square Error = " << meanRootMeanSquareErrorPF / iterAsDouble << " pixels" << std::endl;
std::cout << " Average fitting duration = " << meanDtPF / iterAsDouble << " ms" << std::endl;
#ifdef VISP_HAVE_DISPLAY
if (data.m_grabber.end() && (!data.m_stepbystep)) {
/// Initial display of the images
vpDisplay::display(data.m_I_orig);
vpDisplay::displayText(data.m_I_orig, data.m_ipLegend, "End of sequence reached. Click to exit.", data.m_colorLegend);
/// Update the display
vpDisplay::flush(data.m_I_orig);
/// Get the user input
vpDisplay::getClick(data.m_I_orig, true);
}
#endif
return 0;
}
#else
int main()
{
std::cerr << "ViSP must be compiled with C++ standard >= C++11 to use this tutorial." << std::endl;
std::cerr << "ViSP must also have a 3rd party enabling display features, such as X11 or OpenCV." << std::endl;
return EXIT_FAILURE;
}
#endif
|