File: tutorial-pf-curve-fitting-lms.cpp

package info (click to toggle)
visp 3.7.0-7
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 166,380 kB
  • sloc: cpp: 392,705; ansic: 224,448; xml: 23,444; python: 13,701; java: 4,792; sh: 206; objc: 145; makefile: 118
file content (161 lines) | stat: -rw-r--r-- 5,964 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/*
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2024 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 */

//! \example tutorial-pf-curve-fitting-lms.cpp

#include <visp3/core/vpConfig.h>
#include <visp3/core/vpException.h>
#include <visp3/core/vpMouseButton.h>
#include <visp3/core/vpTime.h>

#ifdef VISP_HAVE_DISPLAY
#include <visp3/gui/vpPlot.h>
#endif

#include "vpTutoCommonData.h"
#include "vpTutoMeanSquareFitting.h"
#include "vpTutoParabolaModel.h"
#include "vpTutoSegmentation.h"

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11) && defined(VISP_HAVE_DISPLAY)
int main(const int argc, const char *argv[])
{
  tutorial::vpTutoCommonData data;
  int returnCode = data.init(argc, argv);
  if (returnCode != tutorial::vpTutoCommonData::SOFTWARE_CONTINUE) {
    return returnCode;
  }
  tutorial::vpTutoMeanSquareFitting lmsFitter(data.m_degree, data.m_I_orig.getHeight(), data.m_I_orig.getWidth());
  const unsigned int vertOffset = static_cast<unsigned int>(data.m_legendOffset.get_i());
  const unsigned int horOffset = static_cast<unsigned int>(data.m_ipLegend.get_j());
  const unsigned int legendLmsVert = data.m_I_orig.getHeight() - 2 * vertOffset;
  const unsigned int legendLmsHor = horOffset;

  //! [Init_plot]
#ifdef VISP_HAVE_DISPLAY
  unsigned int plotHeight = 350, plotWidth = 350;
  int plotXpos = static_cast<int>(data.m_legendOffset.get_u());
  int plotYpos = static_cast<int>(data.m_I_orig.getHeight() + 4. * data.m_legendOffset.get_v());
  vpPlot plot(1, plotHeight, plotWidth, plotXpos, plotYpos, "Root mean-square error");
  plot.initGraph(0, 1);
  plot.setLegend(0, 0, "LMS estimator");
  plot.setColor(0, 0, vpColor::gray);
#endif
//! [Init_plot]

  bool run = true;
  unsigned int nbIter = 0;
  double  meanDtLMS = 0.;
  double  meanRootMeanSquareErrorLMS = 0.;
  while (!data.m_grabber.end() && run) {
    //! [Measurements_extraction]
    std::cout << "Iter " << nbIter << std::endl;
    data.m_grabber.acquire(data.m_I_orig);

    // Perform color segmentation
    tutorial::performSegmentationHSV(data);

    /// Extracting the skeleton of the mask
    std::vector<vpImagePoint> edgePoints = tutorial::extractSkeleton(data);

    /// Simulate sensor noise
    std::vector<vpImagePoint> noisyEdgePoints = tutorial::addSaltAndPepperNoise(edgePoints, data);
    //! [Measurements_extraction]

#ifdef VISP_HAVE_DISPLAY
    /// Initial display of the images
    vpDisplay::display(data.m_I_orig);
    vpDisplay::display(data.m_I_segmented);
    vpDisplay::display(data.m_IskeletonNoisy);
#endif

    /// Fit using least-square
    double tLms = vpTime::measureTimeMs();
    //! [LMS_interpolation]
    lmsFitter.fit(noisyEdgePoints);
    //! [LMS_interpolation]
    double dtLms = vpTime::measureTimeMs() - tLms;
    double lmsRootMeanSquareError = lmsFitter.evaluate(edgePoints);
    std::cout << "  [Least-Mean Square method] " << std::endl;
    std::cout << "    Coeffs = [" << lmsFitter.getCoeffs().transpose() << " ]" << std::endl;
    std::cout << "    Root Mean Square Error = " << lmsRootMeanSquareError << " pixels" << std::endl;
    std::cout << "    Fitting duration = " << dtLms << " ms" << std::endl;
    meanDtLMS += dtLms;
    meanRootMeanSquareErrorLMS += lmsRootMeanSquareError;

#ifdef VISP_HAVE_DISPLAY
    // Update image overlay
    lmsFitter.display<unsigned char>(data.m_IskeletonNoisy, vpColor::gray, legendLmsVert, legendLmsHor);

    // Update plot
    plot.plot(0, 0, nbIter, lmsRootMeanSquareError);
    // Display the images with overlayed info
    data.displayLegend(data.m_I_orig);
    vpDisplay::flush(data.m_I_orig);
    vpDisplay::flush(data.m_I_segmented);
    vpDisplay::flush(data.m_IskeletonNoisy);
    run = data.manageClicks(data.m_I_orig, data.m_stepbystep);
#endif
    ++nbIter;
  }

  double iterAsDouble = static_cast<double>(nbIter);
  std::cout << std::endl << std::endl << "-----[Statistics summary]-----" << std::endl;
  std::cout << "  [LMS method] " << std::endl;
  std::cout << "    Average Root Mean Square Error = " << meanRootMeanSquareErrorLMS / iterAsDouble << " pixels" << std::endl;
  std::cout << "    Average fitting duration = " << meanDtLMS / iterAsDouble << " ms" << std::endl;

#ifdef VISP_HAVE_DISPLAY
  if (data.m_grabber.end() && (!data.m_stepbystep)) {
    /// Initial display of the images
    vpDisplay::display(data.m_I_orig);
    vpDisplay::displayText(data.m_I_orig, data.m_ipLegend, "End of sequence reached. Click to exit.", data.m_colorLegend);

    /// Update the display
    vpDisplay::flush(data.m_I_orig);

    /// Get the user input
    vpDisplay::getClick(data.m_I_orig, true);
  }
#endif
  return 0;
}
#else
int main()
{
  std::cerr << "ViSP must be compiled with C++ standard >= C++11 to use this tutorial." << std::endl;
  std::cerr << "ViSP must also have a 3rd party enabling display features, such as X11 or OpenCV." << std::endl;
  return EXIT_FAILURE;
}
#endif