1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
|
/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#include "vpTutoMeanSquareFitting.h"
#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
#ifndef DOXYGEN_SHOULD_SKIP_THIS
namespace tutorial
{
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
vpTutoMeanSquareFitting::vpTutoMeanSquareFitting(const unsigned int °ree, const unsigned int &height, const unsigned int &width)
: m_degree(degree)
, m_height(static_cast<unsigned int>(height))
, m_width(static_cast<unsigned int>(width))
, m_model(degree, height, width)
, m_isFitted(false)
{ }
//! [Solve_LMS_system]
void vpTutoMeanSquareFitting::fit(const std::vector<vpImagePoint> &pts)
{
vpMatrix A; // The matrix that contains the u^i
vpMatrix X; // The matrix we want to estimate, that contains the polynomial coefficients.
vpMatrix b; // The matrix that contains the v values
// Fill the matrices that form the system we want to solve
vpTutoParabolaModel::fillSystem(m_degree, m_height, m_width, pts, A, b);
// Compute the parabola coefficients using the least-mean-square method.
X = A.pseudoInverse() * b;
m_model = vpTutoParabolaModel(X, m_height, m_width);
m_isFitted = true;
}
//! [Solve_LMS_system]
double vpTutoMeanSquareFitting::evaluate(const std::vector<vpImagePoint> &pts)
{
if (!m_isFitted) {
throw(vpException(vpException::notInitialized, "fit() has not been called."));
}
unsigned int nbPts = static_cast<unsigned int>(pts.size());
// Compute the mean absolute error
double meanSquareError = 0.f;
for (unsigned int i = 0; i < nbPts; ++i) {
double squareError = evaluate(pts[i]);
meanSquareError += squareError;
}
meanSquareError /= static_cast<double>(nbPts);
return std::sqrt(meanSquareError);
}
double vpTutoMeanSquareFitting::evaluate(const vpImagePoint &pt)
{
if (!m_isFitted) {
throw(vpException(vpException::notInitialized, "fit() has not been called."));
}
double u = pt.get_u();
double v = pt.get_v();
double v_model = model(u);
double error = v - v_model;
double squareError = error * error;
return squareError;
}
double vpTutoMeanSquareFitting::model(const double &u)
{
if (!m_isFitted) {
throw(vpException(vpException::notInitialized, "fit() has not been called."));
}
double v = m_model.eval(u);
return v;
}
}
#endif
#else
void dummy_vpTutoMeanSquareFitting() { }
#endif
|