1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2024 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#include "vpTutoSegmentation.h"
#include <visp3/core/vpGaussRand.h>
#include <visp3/core/vpHSV.h>
#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
#ifndef DOXYGEN_SHOULD_SKIP_THIS
namespace tutorial
{
#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif
void performSegmentationHSV(vpTutoCommonData &data)
{
vpImage<vpHSV<unsigned char, true>> Ihsv;
vpImageConvert::convert(data.m_I_orig, Ihsv);
vpImageTools::inRange(Ihsv, data.m_hsv_values, data.m_mask);
vpImageTools::inMask(data.m_I_orig, data.m_mask, data.m_I_segmented);
}
std::vector< VISP_NAMESPACE_ADDRESSING vpImagePoint > extractSkeleton(vpTutoCommonData &data)
{
const int height = data.m_mask.getHeight();
const int width = data.m_mask.getWidth();
data.m_Iskeleton.resize(height, width, 0);
std::vector<vpImagePoint> points;
// Edge thinning along the horizontal direction
for (int y = 0; y < height; ++y) {
int left = -1;
for (int x = 0; x < width - 1; ++x) {
if ((data.m_mask[y][x] > 0) && (data.m_mask[y][x + 1] > 0)) {
if (left < 0) {
left = x;
}
}
else if (data.m_mask[y][x] > 0) {
int cx = x; // Case 1 pix wide
if (left >= 0) {
// Case more than 1 pix wide
cx = static_cast<int>(((left + x) - 1) * 0.5f);
}
vpImagePoint pt(y, cx);
points.push_back(pt);
data.m_Iskeleton[y][cx] = 255;
left = -1;
}
}
}
// Edge thinning along the vertical direction
for (int x = 0; x < width; ++x) {
int top = -1;
for (int y = 0; y < height - 1; ++y) {
if ((data.m_mask[y][x] > 0) && (data.m_mask[y + 1][x] > 0)) {
if (top < 0) {
top = y;
}
}
else if (data.m_mask[y][x] > 0) {
int cy = y; // Case 1 pix wide
if (top >= 0) {
cy = static_cast<int>(((top + y) - 1) * 0.5f); // Case more than 1 pix wide
}
if (data.m_Iskeleton[cy][x] == 0) {
vpImagePoint pt(cy, x);
points.push_back(pt);
data.m_Iskeleton[cy][x] = 255;
}
top = -1;
}
}
}
return points;
}
std::vector< vpImagePoint > addSaltAndPepperNoise(const std::vector< vpImagePoint > &noisefreePts, vpTutoCommonData &data)
{
const unsigned int nbNoiseFreePts = static_cast<unsigned int>(noisefreePts.size());
const unsigned int nbPtsToAdd = static_cast<unsigned int>(data.m_ratioSaltPepperNoise * nbNoiseFreePts);
const double width = data.m_Iskeleton.getWidth();
const double height = data.m_Iskeleton.getHeight();
data.m_IskeletonNoisy = data.m_Iskeleton;
vpGaussRand rngX(0.1666, 0.5, static_cast<long>(vpTime::measureTimeMicros()));
vpGaussRand rngY(0.1666, 0.5, static_cast<long>(vpTime::measureTimeMicros() + 4224));
std::vector<vpImagePoint> noisyPts = noisefreePts;
for (unsigned int i = 0; i < nbPtsToAdd + 1; ++i) {
double uNormalized = rngX();
double vNormalized = rngY();
// Clamp to interval[0, 1[
uNormalized = std::max(uNormalized, 0.);
uNormalized = std::min(uNormalized, 0.99999);
vNormalized = std::max(vNormalized, 0.);
vNormalized = std::min(vNormalized, 0.99999);
// Scale to image size
double u = uNormalized * width;
double v = vNormalized * height;
// Create corresponding image point
vpImagePoint pt(v, u);
noisyPts.push_back(pt);
data.m_IskeletonNoisy[static_cast<int>(v)][static_cast<int>(u)] = 255;
}
return noisyPts;
}
}
#endif
#else
void dummy_vpTutoSegmentation() { }
#endif
|