File: tutorial-pf.cpp

package info (click to toggle)
visp 3.7.0-7
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 166,380 kB
  • sloc: cpp: 392,705; ansic: 224,448; xml: 23,444; python: 13,701; java: 4,792; sh: 206; objc: 145; makefile: 118
file content (857 lines) | stat: -rw-r--r-- 33,767 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
/*
 *
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2024 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
*/

/*! \example tutorial-pf.cpp
  Tutorial on how to use the Particle Filter (PF) on a complex non-linear use-case.
  The system is an object, whose coordinate frame origin is the point O, on which are sticked four markers.
  The object revolves in a plane parallel to the ground around a fixed point W whose coordinate frame is the world frame.
  The scene is observed by a pinhole camera whose coordinate frame has the origin C and which is
  fixed to the ceiling.

  The state vector of the PF is:
  \f[
  \begin{array}{lcl}
    \textbf{x}[0] &=& {}^WX_x \\
    \textbf{x}[1] &=& {}^WX_y \\
    \textbf{x}[2] &=& {}^WX_z \\
    \textbf{x}[3] &=& \omega \Delta t
  \end{array}
  \f]

  The measurement \f$ \textbf{z} \f$ corresponds to the coordinates in pixels of the different markers.
  Be \f$ u_i \f$ and \f$ v_i \f$ the horizontal and vertical pixel coordinates of the \f$ i^{th} \f$ marker.
  The measurement vector can be written as:
  \f[
    \begin{array}{lcl}
        \textbf{z}[2i] &=& u_i \\
        \textbf{z}[2i+1] &=& v_i
    \end{array}
  \f]

  Some noise is added to the measurement vector to simulate measurements which are
  not perfect.
*/

// ViSP includes
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpGaussRand.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpMeterPixelConversion.h>
#include <visp3/core/vpPixelMeterConversion.h>
//! [Display_includes]
#ifdef VISP_HAVE_DISPLAY
#include <visp3/gui/vpPlot.h>
#include <visp3/gui/vpDisplayFactory.h>
#endif
//! [Display_includes]
#include <visp3/vision/vpPose.h>

//! [UKF_includes]
#include <visp3/core/vpUKSigmaDrawerMerwe.h>
#include <visp3/core/vpUnscentedKalman.h>
//! [UKF_includes]

//! [PF_includes]
#include <visp3/core/vpParticleFilter.h>
//! [PF_includes]

#ifdef ENABLE_VISP_NAMESPACE
using namespace VISP_NAMESPACE_NAME;
#endif

#if (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11)
//! [Process_function]
/**
 * \brief Process function that makes evolve the state model {\f$ {}^WX_x \f$, \f$ {}^WX_y \f$, \f$ {}^WX_z \f$, \f$ C = \omega \Delta t \f$}
 * over time.
 *
 * \param[in] x The state vector
 * \return vpColVector The state vector at the next iteration.
 */
vpColVector fx(const vpColVector &x, const double & /*dt*/)
{
  vpColVector x_kPlus1(4);
  x_kPlus1[0] = x[0] * std::cos(x[3]) - x[1] * std::sin(x[3]); // wX
  x_kPlus1[1] = x[0] * std::sin(x[3]) + x[1] * std::cos(x[3]); // wY
  x_kPlus1[2] = x[2]; // wZ
  x_kPlus1[3] = x[3]; // omega * dt
  return x_kPlus1;
}
//! [Process_function]

//! [Pose_for_display]
/**
 * \brief Compute the pose from the 3D coordinates of the markers and their coordinates in pixels
 * in the image.
 *
 * \param[in] point The 3D coordinates of the markers in the object frame.
 * \param[in] ip The pixel coordinates of the markers in the image.
 * \param[in] cam The camera parameters used to acquire the image.
 * \return vpHomogeneousMatrix The pose of the object in the camera frame.
 */
vpHomogeneousMatrix computePose(std::vector<vpPoint> &point, const std::vector<vpImagePoint> &ip, const vpCameraParameters &cam)
{
  vpPose pose;
  double x = 0, y = 0;
  for (unsigned int i = 0; i < point.size(); i++) {
    vpPixelMeterConversion::convertPoint(cam, ip[i], x, y);
    point[i].set_x(x);
    point[i].set_y(y);
    pose.addPoint(point[i]);
  }

  vpHomogeneousMatrix cMo;
  pose.computePose(vpPose::DEMENTHON_LAGRANGE_VIRTUAL_VS, cMo);
  return cMo;
}
//! [Pose_for_display]

//! [Object_simulator]
/**
 * \brief Class that simulates the moving object.
 * Random noise is added in order to make vary the velocity of the object.
 */
class vpObjectSimulator
{
public:
  /**
   * \brief Construct a new vpObjectSimulator object.
   *
   * \param[in] R The radius of the revolution around the world frame origin.
   * \param[in] w The pulsation of the motion.
   * \param[in] phi The phase of the motion.
   * \param[in] wZ The y-coordinate of the object in the world frame.
   * \param[in] stdevRng The standard deviation of the noise generator that will make vary the velocity of the object.
   */
  vpObjectSimulator(const double &R, const double &w, const double &phi, const double &wZ, const double &stdevRng)
    : m_R(R)
    , m_w(w)
    , m_phi(phi)
    , m_wZ(wZ)
    , m_rng(stdevRng, 0.)
  { }

  /**
   * \brief Move the object to its new position, expressed in the world frame.
   *
   * \param[in] t The current time.
   * \return vpColVector The new position of the object in the world frame, expressed as homogeneous coordinates.
   */
  vpColVector move(const double &t)
  {
    vpColVector wX(4, 1.);
    double tNoisy = (m_w + m_rng())* t + m_phi;
    wX[0] = m_R * std::cos(tNoisy);
    wX[1] = m_R * std::sin(tNoisy);
    wX[2] = m_wZ;
    return wX;
  }

private:
  double m_R; //!< Radius of the revolution around the world frame origin.
  double m_w; //!< Pulsation of the motion.
  double m_phi; //!< Phase of the motion.
  const double m_wZ; //!< The z-coordinate of the object in the world frame.
  vpGaussRand m_rng; //!< Noise generator to make vary the velocity of the object.
};
//! [Object_simulator]

//! [Markers_class]
/**
 * \brief Class that permits to convert the 3D position of the object into measurements.
 */
class vpMarkersMeasurements
{
public:
  /**
   * \brief Construct a new vpMarkersMeasurements object.
   *
   * \param[in] cam The camera parameters.
   * \param[in] cMw The pose of the world frame with regard to the camera frame.
   * \param[in] wRo The rotation matrix expressing the rotation between the world frame and object frame.
   * \param[in] markers The position of the markers in the object frame.
   * \param[in] noise_stdev The standard deviation for the noise generator
   * \param[in] seed The seed for the noise generator
   * \param[in] likelihood_stdev The standard deviation for the likelihood computation. A particle that is
   * 3. * likelihood_stdev further than the measurements will have a weight of 0.
   */
  vpMarkersMeasurements(const vpCameraParameters &cam, const vpHomogeneousMatrix &cMw, const vpRotationMatrix &wRo,
                        const std::vector<vpColVector> &markers, const double &noise_stdev, const long &seed,
                        const double &likelihood_stdev)
    : m_cam(cam)
    , m_cMw(cMw)
    , m_wRo(wRo)
    , m_markers(markers)
    , m_rng(noise_stdev, 0., seed)
  {
    double sigmaDistanceSquared = likelihood_stdev * likelihood_stdev;
    m_constantDenominator = 1. / std::sqrt(2. * M_PI * sigmaDistanceSquared);
    m_constantExpDenominator = -1. / (2. * sigmaDistanceSquared);

    const unsigned int nbMarkers = static_cast<unsigned int>(m_markers.size());
    for (unsigned int i = 0; i < nbMarkers; ++i) {
      vpColVector marker = markers[i];
      m_markersAsVpPoint.push_back(vpPoint(marker[0], marker[1], marker[2]));
    }
  }

  //! [Measurement_function]
  /**
   * \brief Convert the prior of the UKF into the measurement space.
   *
   * \param[in] x The prior.
   * \return vpColVector The prior expressed in the measurement space.
   */
  vpColVector state_to_measurement(const vpColVector &x)
  {
    unsigned int nbMarkers = static_cast<unsigned int>(m_markers.size());
    vpColVector meas(2*nbMarkers);
    vpHomogeneousMatrix wMo;
    vpTranslationVector wTo(x[0], x[1], x[2]);
    wMo.buildFrom(wTo, m_wRo);
    for (unsigned int i = 0; i < nbMarkers; ++i) {
      vpColVector cX = m_cMw * wMo * m_markers[i];
      double u = 0., v = 0.;
      vpMeterPixelConversion::convertPoint(m_cam, cX[0] / cX[2], cX[1] / cX[2], u, v);
      meas[2*i] = u;
      meas[2*i + 1] = v;
    }
    return meas;
  }
  //! [Measurement_function]

  //! [GT_measurements]
  /**
   * \brief Perfect measurement of the projection of the markers in the image when the object
   * is located at \b wX.
   *
   * \param[in] wX The actual position of the robot (wX[0]: x, wX[1]: y, wX[2] = z).
   * \return vpColVector [2*i] u_i [2*i + 1] v_i where i is the index of the marker.
   */
  vpColVector measureGT(const vpColVector &wX)
  {
    unsigned int nbMarkers = static_cast<unsigned int>(m_markers.size());
    vpColVector meas(2*nbMarkers);
    vpHomogeneousMatrix wMo;
    vpTranslationVector wTo(wX[0], wX[1], wX[2]);
    wMo.buildFrom(wTo, m_wRo);
    for (unsigned int i = 0; i < nbMarkers; ++i) {
      vpColVector cX = m_cMw * wMo * m_markers[i];
      double u = 0., v = 0.;
      vpMeterPixelConversion::convertPoint(m_cam, cX[0] / cX[2], cX[1] / cX[2], u, v);
      meas[2*i] = u;
      meas[2*i + 1] = v;
    }
    return meas;
  }
  //! [GT_measurements]

  //! [Noisy_measurements]
  /**
   * \brief Noisy measurement of the projection of the markers in the image when the object
   * is located at \b wX.
   *
   * \param[in] wX The actual position of the robot (wX[0]: x, wX[1]: y, wX[2] = z).
   * \return vpColVector [2*i] u_i [2*i + 1] v_i where i is the index of the marker.
   */
  vpColVector measureWithNoise(const vpColVector &wX)
  {
    vpColVector measurementsGT = measureGT(wX);
    vpColVector measurementsNoisy = measurementsGT;
    unsigned int sizeMeasurement = measurementsGT.size();
    for (unsigned int i = 0; i < sizeMeasurement; ++i) {
      measurementsNoisy[i] += m_rng();
    }
    return measurementsNoisy;
  }
  //! [Noisy_measurements]

  //! [Likelihood_function]
  /**
   * \brief Compute the likelihood of a particle compared to the measurements.
   * The likelihood equals zero if the particle is completely different of
   * the measurements and equals one if it matches completely.
   * The chosen likelihood is a Gaussian function that penalizes the mean distance
   * between the projection of the markers corresponding to the particle position
   * and the measurements of the markers in the image.
   *
   * \param[in] x The particle.
   * \param[in] meas The measurement vector. meas[2i] = u_i meas[2i + 1] = v_i .
   * \return double The likelihood of the particle.
   */
  double likelihood(const vpColVector &x, const vpColVector &meas)
  {
    unsigned int nbMarkers = static_cast<unsigned int>(m_markers.size());
    double likelihood = 0.;
    vpHomogeneousMatrix wMo;
    vpTranslationVector wTo(x[0], x[1], x[2]);
    wMo.buildFrom(wTo, m_wRo);
    const unsigned int sizePt2D = 2;
    const unsigned int idX = 0, idY = 1, idZ = 2;
    double sumError = 0.;
    // Compute the error between the projection of the markers that correspond
    // to the particle position and the actual measurements of the markers
    // projection
    for (unsigned int i = 0; i < nbMarkers; ++i) {
      vpColVector cX = m_cMw * wMo * m_markers[i];
      vpImagePoint projParticle;
      vpMeterPixelConversion::convertPoint(m_cam, cX[idX] / cX[idZ], cX[idY] / cX[idZ], projParticle);
      vpImagePoint measPt(meas[sizePt2D * i + 1], meas[sizePt2D * i]);
      double error = vpImagePoint::sqrDistance(projParticle, measPt);
      sumError += error;
    }
    // Compute the likelihood from the mean error
    likelihood = std::exp(m_constantExpDenominator * sumError / static_cast<double>(nbMarkers)) * m_constantDenominator;
    likelihood = std::min(likelihood, 1.0); // Clamp to have likelihood <= 1.
    likelihood = std::max(likelihood, 0.); // Clamp to have likelihood >= 0.
    return likelihood;
  }
  //! [Likelihood_function]
private:
  vpCameraParameters m_cam; // The camera parameters
  vpHomogeneousMatrix m_cMw; // The pose of the world frame with regard to the camera frame.
  vpRotationMatrix m_wRo; // The rotation matrix that expresses the rotation between the world frame and object frame.
  std::vector<vpColVector> m_markers; // The position of the markers in the object frame.
  std::vector<vpPoint> m_markersAsVpPoint; // The position of the markers in the object frame, expressed as vpPoint.
  vpGaussRand m_rng; // Noise simulator for the measurements
  double m_constantDenominator; // Denominator of the Gaussian function used for the likelihood computation.
  double m_constantExpDenominator; // Denominator of the exponential of the Gaussian function used for the likelihood computation.
};
//! [Markers_class]

//! [CLI]
struct SoftwareArguments
{
  // --- Main loop parameters---
  static const int SOFTWARE_CONTINUE = 42;
  bool m_useDisplay; //!< If true, activate the plot and the renderer if VISP_HAVE_DISPLAY is defined.
  unsigned int m_nbStepsWarmUp; //!< Number of steps for the warmup phase.
  unsigned int m_nbSteps; //!< Number of steps for the main loop.
  // --- PF parameters---
  unsigned int m_N; //!< The number of particles.
  double m_maxDistanceForLikelihood; //!< The maximum allowed distance between a particle and the measurement, leading to a likelihood equal to 0..
  double m_ampliMaxX; //!< Amplitude max of the noise for the state component corresponding to the X coordinate.
  double m_ampliMaxY; //!< Amplitude max of the noise for the state component corresponding to the Y coordinate.
  double m_ampliMaxZ; //!< Amplitude max of the noise for the state component corresponding to the Z coordinate.
  double m_ampliMaxOmega; //!< Amplitude max of the noise for the state component corresponding to the pulsation.
  long m_seedPF; //!< Seed for the random generators of the PF.
  int m_nbThreads; //!< Number of thread to use in the Particle Filter.

  SoftwareArguments()
    : m_useDisplay(true)
    , m_nbStepsWarmUp(200)
    , m_nbSteps(300)
    , m_N(500)
    , m_maxDistanceForLikelihood(10.)
    , m_ampliMaxX(0.02)
    , m_ampliMaxY(0.02)
    , m_ampliMaxZ(0.01)
    , m_ampliMaxOmega(0.02)
    , m_seedPF(4224)
    , m_nbThreads(1)
  { }

  int parseArgs(const int argc, const char *argv[])
  {
    int i = 1;
    while (i < argc) {
      std::string arg(argv[i]);
      if ((arg == "--nb-steps-main") && ((i+1) < argc)) {
        m_nbSteps = std::atoi(argv[i + 1]);
        ++i;
      }
      else if ((arg == "--nb-steps-warmup") && ((i+1) < argc)) {
        m_nbStepsWarmUp = std::atoi(argv[i + 1]);
        ++i;
      }
      else if ((arg == "--max-distance-likelihood") && ((i+1) < argc)) {
        m_maxDistanceForLikelihood = std::atof(argv[i + 1]);
        ++i;
      }
      else if (((arg == "-N") || (arg == "--nb-particles")) && ((i+1) < argc)) {
        m_N = std::atoi(argv[i + 1]);
        ++i;
      }
      else if ((arg == "--seed") && ((i+1) < argc)) {
        m_seedPF = std::atoi(argv[i + 1]);
        ++i;
      }
      else if ((arg == "--nb-threads") && ((i+1) < argc)) {
        m_nbThreads = std::atoi(argv[i + 1]);
        ++i;
      }
      else if ((arg == "--ampli-max-X") && ((i+1) < argc)) {
        m_ampliMaxX = std::atof(argv[i + 1]);
        ++i;
      }
      else if ((arg == "--ampli-max-Y") && ((i+1) < argc)) {
        m_ampliMaxY = std::atof(argv[i + 1]);
        ++i;
      }
      else if ((arg == "--ampli-max-Z") && ((i+1) < argc)) {
        m_ampliMaxZ = std::atof(argv[i + 1]);
        ++i;
      }
      else if ((arg == "--ampli-max-omega") && ((i+1) < argc)) {
        m_ampliMaxOmega = std::atof(argv[i + 1]);
        ++i;
      }
      else if (arg == "-d") {
        m_useDisplay = false;
      }
      else if ((arg == "-h") || (arg == "--help")) {
        printUsage(std::string(argv[0]));
        SoftwareArguments defaultArgs;
        defaultArgs.printDetails();
        return 0;
      }
      else {
        std::cout << "WARNING: unrecognised argument \"" << arg << "\"";
        if (i + 1 < argc) {
          std::cout << " with associated value(s) { ";
          int nbValues = 0;
          int j = i + 1;
          bool hasToRun = true;
          while ((j < argc) && hasToRun) {
            std::string nextValue(argv[j]);
            if (nextValue.find("--") == std::string::npos) {
              std::cout << nextValue << " ";
              ++nbValues;
            }
            else {
              hasToRun = false;
            }
            ++j;
          }
          std::cout << "}" << std::endl;
          i += nbValues;
        }
      }
      ++i;
    }
    return SOFTWARE_CONTINUE;
  }

private:
  void printUsage(const std::string &softName)
  {
    std::cout << "SYNOPSIS" << std::endl;
    std::cout << "  " << softName << " [--nb-steps-main <uint>] [--nb-steps-warmup <uint>]" << std::endl;
    std::cout << "  [--max-distance-likelihood <double>] [-N, --nb-particles <uint>] [--seed <int>] [--nb-threads <int>]" << std::endl;
    std::cout << "  [--ampli-max-X <double>] [--ampli-max-Y <double>] [--ampli-max-Z <double>] [--ampli-max-omega <double>]" << std::endl;
    std::cout << "  [-d, --no-display] [-h]" << std::endl;
  }

  void printDetails()
  {
    std::cout << std::endl << std::endl;
    std::cout << "DETAILS" << std::endl;
    std::cout << "  --nb-steps-main" << std::endl;
    std::cout << "    Number of steps in the main loop." << std::endl;
    std::cout << "    Default: " << m_nbSteps << std::endl;
    std::cout << std::endl;
    std::cout << "  --nb-steps-warmup" << std::endl;
    std::cout << "    Number of steps in the warmup loop." << std::endl;
    std::cout << "    Default: " << m_nbStepsWarmUp << std::endl;
    std::cout << std::endl;
    std::cout << "  --max-distance-likelihood" << std::endl;
    std::cout << "    Maximum mean distance of the projection of the markers corresponding" << std::endl;
    std::cout << "    to a particle with the measurements. Above this value, the likelihood of the particle is 0." << std::endl;
    std::cout << "    Default: " << m_maxDistanceForLikelihood << std::endl;
    std::cout << std::endl;
    std::cout << "  -N, --nb-particles" << std::endl;
    std::cout << "    Number of particles of the Particle Filter." << std::endl;
    std::cout << "    Default: " << m_N << std::endl;
    std::cout << std::endl;
    std::cout << "  --seed" << std::endl;
    std::cout << "    Seed to initialize the Particle Filter." << std::endl;
    std::cout << "    Use a negative value makes to use the current timestamp instead." << std::endl;
    std::cout << "    Default: " << m_seedPF << std::endl;
    std::cout << std::endl;
    std::cout << "  --nb-threads" << std::endl;
    std::cout << "    Set the number of threads to use in the Particle Filter (only if OpenMP is available)." << std::endl;
    std::cout << "    Use a negative value to use the maximum number of threads instead." << std::endl;
    std::cout << "    Default: " << m_nbThreads << std::endl;
    std::cout << std::endl;
    std::cout << "  --ampli-max-X" << std::endl;
    std::cout << "    Maximum amplitude of the noise added to a particle along the X-axis." << std::endl;
    std::cout << "    Default: " << m_ampliMaxX << std::endl;
    std::cout << std::endl;
    std::cout << "  --ampli-max-Y" << std::endl;
    std::cout << "    Maximum amplitude of the noise added to a particle along the Y-axis." << std::endl;
    std::cout << "    Default: " << m_ampliMaxY << std::endl;
    std::cout << std::endl;
    std::cout << "  --ampli-max-Z" << std::endl;
    std::cout << "    Maximum amplitude of the noise added to a particle along the Z-axis." << std::endl;
    std::cout << "    Default: " << m_ampliMaxZ << std::endl;
    std::cout << std::endl;
    std::cout << "  --ampli-max-omega" << std::endl;
    std::cout << "    Maximum amplitude of the noise added to a particle affecting the pulsation of the motion." << std::endl;
    std::cout << "    Default: " << m_ampliMaxOmega << std::endl;
    std::cout << std::endl;
    std::cout << "  -d, --no-display" << std::endl;
    std::cout << "    Deactivate display." << std::endl;
    std::cout << "    Default: display is ";
#ifdef VISP_HAVE_DISPLAY
    std::cout << "ON" << std::endl;
#else
    std::cout << "OFF" << std::endl;
#endif
    std::cout << std::endl;
    std::cout << "  -h, --help" << std::endl;
    std::cout << "    Display this help." << std::endl;
    std::cout << std::endl;
  }
};
//! [CLI]

int main(const int argc, const char *argv[])
{
  SoftwareArguments args;
  int returnCode = args.parseArgs(argc, argv);
  if (returnCode != SoftwareArguments::SOFTWARE_CONTINUE) {
    return returnCode;
  }

  //! [Constants_for_simulation]
  const unsigned int nbIter = 200; // Number of time steps for the simulation
  const double dt = 0.001; // Period of 0.001s
  const double sigmaMeasurements = 2.; // Standard deviation of the measurements: 2 pixels
  const double radius = 0.25; // Radius of revolution of 0.25m
  const double w = 2 * M_PI * 10; // Pulsation of the motion of revolution
  const double phi = 2; // Phase of the motion of revolution

  // Vector of the markers sticked on the object
  const std::vector<vpColVector> markers = { vpColVector({-0.05, 0.05, 0., 1.}),
                                             vpColVector({0.05, 0.05, 0., 1.}),
                                             vpColVector({0.05, -0.05, 0., 1.}),
                                             vpColVector({-0.05, -0.05, 0., 1.}) };
  const unsigned int nbMarkers = static_cast<unsigned int>(markers.size());
  std::vector<vpPoint> markersAsVpPoint;
  for (unsigned int i = 0; i < nbMarkers; ++i) {
    vpColVector marker = markers[i];
    markersAsVpPoint.push_back(vpPoint(marker[0], marker[1], marker[2]));
  }

  const long seed = 42; // Seed for the random generator
  vpHomogeneousMatrix cMw; // Pose of the world frame with regard to the camera frame
  cMw[0][0] = 1.; cMw[0][1] = 0.; cMw[0][2] = 0.; cMw[0][3] = 0.2;
  cMw[1][0] = 0.; cMw[1][1] = -1.; cMw[1][2] = 0.; cMw[1][3] = 0.3;
  cMw[2][0] = 0.; cMw[2][1] = 0.; cMw[2][2] = -1.; cMw[2][3] = 1.;

  vpHomogeneousMatrix wMo; // Pose of the object frame with regard to the world frame
  wMo[0][0] = 1.; wMo[0][1] = 0.; wMo[0][2] = 0.; wMo[0][3] = radius;
  wMo[1][0] = 0.; wMo[1][1] = 1.; wMo[1][2] = 0.; wMo[1][3] = 0;
  wMo[2][0] = 0.; wMo[2][1] = 0.; wMo[2][2] = 1.; wMo[2][3] = 0.2;
  vpRotationMatrix wRo; // Rotation between the object frame and world frame
  wMo.extract(wRo);
  const double wZ = wMo[2][3];
  //! [Constants_for_simulation]

  //! [Camera_for_measurements]
  // Create a camera parameter container
  // Camera initialization with a perspective projection without distortion model
  double px = 600; double py = 600; double u0 = 320; double v0 = 240;
  vpCameraParameters cam;
  cam.initPersProjWithoutDistortion(px, py, u0, v0);
  //! [Camera_for_measurements]

  //! [Initial_estimates]
  vpColVector X0(4); // The initial guess for the state
  X0[0] = 0.95 * radius * std::cos(phi); // Wrong estimation of the position along the X-axis = 5% of error
  X0[1] = 0.95 * radius * std::sin(phi); // Wrong estimation of the position along the Y-axis = 5% of error
  X0[2] = 0.95 * wZ; // Wrong estimation of the position along the Z-axis: error of 5%
  X0[3] = 0.95 * w * dt; // Wrong estimation of the pulsation: error of 25%
  //! [Initial_estimates]

  //! [Constants_for_the_PF]
  const double maxDistanceForLikelihood = args.m_maxDistanceForLikelihood; // The maximum allowed distance between a particle and the measurement, leading to a likelihood equal to 0..
  const double sigmaLikelihood = maxDistanceForLikelihood / 3.; // The standard deviation of likelihood function.
  const unsigned int nbParticles = args.m_N; // Number of particles to use
  const double ampliMaxX = args.m_ampliMaxX, ampliMaxY = args.m_ampliMaxY, ampliMaxZ = args.m_ampliMaxZ;
  const double ampliMaxOmega = args.m_ampliMaxOmega;
  const std::vector<double> stdevsPF = { ampliMaxX/3., ampliMaxY/3., ampliMaxZ/3., ampliMaxOmega/3. }; // Standard deviation for each state component
  long seedPF = args.m_seedPF; // Seed for the random generators of the PF
  const int nbThread = args.m_nbThreads;
  if (seedPF < 0) {
    seedPF = static_cast<long>(vpTime::measureTimeMicros());
  }
  //! [Constants_for_the_PF]

  // Object that converts the pose of the object into measurements
  vpMarkersMeasurements markerMeas(cam, cMw, wRo, markers, sigmaMeasurements, seed, sigmaLikelihood);

  //! [Init_functions_pf]
  vpParticleFilter<vpColVector>::vpProcessFunction processFunc = fx;
  using std::placeholders::_1;
  using std::placeholders::_2;
  vpParticleFilter<vpColVector>::vpLikelihoodFunction likelihoodFunc = std::bind(&vpMarkersMeasurements::likelihood, &markerMeas, _1, _2);
  vpParticleFilter<vpColVector>::vpResamplingConditionFunction checkResamplingFunc = vpParticleFilter<vpColVector>::simpleResamplingCheck;
  vpParticleFilter<vpColVector>::vpResamplingFunction resamplingFunc = vpParticleFilter<vpColVector>::simpleImportanceResampling;
  //! [Init_functions_pf]

  //! [Init_PF]
  // Initialize the PF
  vpParticleFilter<vpColVector> pfFilter(nbParticles, stdevsPF, seedPF, nbThread);
  pfFilter.init(X0, processFunc, likelihoodFunc, checkResamplingFunc, resamplingFunc);
  //! [Init_PF]

  //! [Init_UKF]
  // Initialize the attributes of the UKF
  // Sigma point drawer
  std::shared_ptr<vpUKSigmaDrawerAbstract> drawer = std::make_shared<vpUKSigmaDrawerMerwe>(4, 0.001, 2., -1);

  // Measurements covariance
  vpMatrix R1landmark(2, 2, 0.); // The covariance of the noise introduced by the measurement with 1 landmark
  R1landmark[0][0] = sigmaMeasurements*sigmaMeasurements;
  R1landmark[1][1] = sigmaMeasurements*sigmaMeasurements;
  vpMatrix R(2*nbMarkers, 2 * nbMarkers);
  for (unsigned int i = 0; i < nbMarkers; ++i) {
    R.insert(R1landmark, 2*i, 2*i);
  }

  // Process covariance
  const double processVariance = 0.000025; // Variance of the process of (0.005cm)^2
  vpMatrix Q; // The noise introduced during the prediction step
  Q.eye(4);
  Q = Q * processVariance;

  // Process covariance initial guess
  vpMatrix P0(4, 4);
  P0.eye(4);
  P0[0][0] = 1.;
  P0[1][1] = 1.;
  P0[2][2] = 1.;
  P0[2][2] = 5.;

  // Functions for the UKF
  vpUnscentedKalman::vpProcessFunction f = fx;
  vpUnscentedKalman::vpMeasurementFunction h = std::bind(&vpMarkersMeasurements::state_to_measurement, &markerMeas, _1);

  // Initialize the UKF
  vpUnscentedKalman ukf(Q, R, drawer, f, h);
  ukf.init(X0, P0);
  //! [Init_UKF]

  //! [Init_plot]
#ifdef VISP_HAVE_DISPLAY
  // Initialize the plot
  vpPlot plot(1);
  plot.initGraph(0, 4);
  plot.setTitle(0, "Position of the robot wX");
  plot.setUnitX(0, "Position along x(m)");
  plot.setUnitY(0, "Position along y (m)");
  plot.setLegend(0, 0, "GT");
  plot.setLegend(0, 1, "PF");
  plot.setLegend(0, 2, "UKF");
  plot.setLegend(0, 3, "Measure");
  plot.initRange(0, -1.25 * radius, 1.25 * radius, -1.25 * radius, 1.25 * radius);
  plot.setColor(0, 0, vpColor::red);
  plot.setColor(0, 1, vpColor::green);
  plot.setColor(0, 2, vpColor::blue);
  plot.setColor(0, 3, vpColor::black);

  vpPlot plotError(1, 350, 700, 700, 700, "Error w.r.t. GT");
  plotError.initGraph(0, 3);
  plotError.setUnitX(0, "Time (s)");
  plotError.setUnitY(0, "Error (m)");
  plotError.setLegend(0, 0, "PF");
  plotError.setLegend(0, 1, "UKF");
  plotError.setLegend(0, 2, "Measure");
  plotError.initRange(0, 0, nbIter * dt, 0, radius / 2.);
  plotError.setColor(0, 0, vpColor::green);
  plotError.setColor(0, 1, vpColor::blue);
  plotError.setColor(0, 2, vpColor::black);
#endif
  //! [Init_plot]

  //! [Init_renderer]
  // Initialize the display
  // Depending on the detected third party libraries, we instantiate here the
  // first video device which is available
#ifdef VISP_HAVE_DISPLAY
  vpImage<vpRGBa> Idisp(700, 700, vpRGBa(255));
  std::shared_ptr<vpDisplay> d = vpDisplayFactory::createDisplay(Idisp, 800, -1, "Projection of the markers");
#endif
  //! [Init_renderer]

  //! [Init_simu]
  // Initialize the simulation
  vpObjectSimulator object(radius, w, phi, wZ, ampliMaxOmega / 3.);
  vpColVector object_pos(4, 0.);
  object_pos[3] = 1.;
  //! [Init_simu]

  //! [Simu_loop]
  for (unsigned int i = 0; i < nbIter; ++i) {
    double t = dt * static_cast<double>(i);
    std::cout << "[Timestep" << i << ", t = " << t << "]" << std::endl;
    //! [Update obj pose]
    // Update object pose
    object_pos = object.move(t);
    //! [Update obj pose]

    //! [Update_measurement]
    // Perform the measurement
    vpColVector z = markerMeas.measureWithNoise(object_pos);
    //! [Update_measurement]

    //! [PF_filtering]
    /// Use the PF to filter the measurement
    double tPF = vpTime::measureTimeMs();
    pfFilter.filter(z, dt);
    double dtPF = vpTime::measureTimeMs() - tPF;
    //! [PF_filtering]

    //! [UKF_filtering]
    // Use the UKF to filter the measurement for comparison
    double tUKF = vpTime::measureTimeMs();
    ukf.filter(z, dt);
    double dtUKF = vpTime::measureTimeMs() - tUKF;
    //! [UKF_filtering]

    // Get the filtered states
    vpColVector XestPF = pfFilter.computeFilteredState();
    vpColVector XestUKF = ukf.getXest();

    // Compute satistics
    vpColVector cX_GT = cMw * object_pos;
    vpColVector wX_UKF(4, 1.);
    vpColVector wX_PF(4, 1.);
    for (unsigned int i = 0; i < 3; ++i) {
      wX_PF[i] = XestPF[i];
      wX_UKF[i] = XestUKF[i];
    }
    vpColVector cX_PF = cMw * wX_PF;
    vpColVector cX_UKF = cMw * wX_UKF;
    vpColVector error_PF = cX_PF - cX_GT;
    vpColVector error_UKF = cX_UKF - cX_GT;

    // Log statistics
    std::cout << "  [Particle Filter method] " << std::endl;
    std::cout << "    Norm of the error = " << error_PF.frobeniusNorm() << " m^2" << std::endl;
    std::cout << "    Fitting duration = " << dtPF << " ms" << std::endl;

    std::cout << "  [Unscented Kalman Filter method] " << std::endl;
    std::cout << "    Norm of the error = " << error_UKF.frobeniusNorm() << " m^2" << std::endl;
    std::cout << "    Fitting duration = " << dtUKF << " ms" << std::endl;

    //! [Update_displays]
#ifdef VISP_HAVE_DISPLAY
    //! [Noisy_pose]
    // Prepare the pose computation:
    // the image points corresponding to the noisy markers are needed
    std::vector<vpImagePoint> ip;
    for (unsigned int id = 0; id < nbMarkers; ++id) {
      vpImagePoint markerProjNoisy(z[2*id + 1], z[2*id]);
      ip.push_back(markerProjNoisy);
    }

    // Compute the pose using the noisy markers
    vpHomogeneousMatrix cMo_noisy = computePose(markersAsVpPoint, ip, cam);
    vpHomogeneousMatrix wMo_noisy = cMw.inverse() * cMo_noisy;
    double wXnoisy = wMo_noisy[0][3];
    double wYnoisy = wMo_noisy[1][3];
    //! [Noisy_pose]

    //! [Update_plot]
    // Plot the ground truth
    plot.plot(0, 0, object_pos[0], object_pos[1]);

    // Plot the PF filtered state
    plot.plot(0, 1, XestPF[0], XestPF[1]);


    // Plot the UKF filtered state
    plot.plot(0, 2, XestUKF[0], XestUKF[1]);

    // Plot the noisy pose
    plot.plot(0, 3, wXnoisy, wYnoisy);

    // Plot the PF filtered state error
    plotError.plot(0, 0, t, error_PF.frobeniusNorm());

    // Plot the UKF filtered state error
    plotError.plot(0, 1, t, error_UKF.frobeniusNorm());

    // Plot the noisy error
    plotError.plot(0, 2, t, (cMo_noisy.getTranslationVector() - vpTranslationVector(cX_GT.extract(0, 3))).frobeniusNorm());
    //! [Update_plot]

    //! [Update_renderer]
    // Display the projection of the markers
    vpDisplay::display(Idisp);
    vpColVector zGT = markerMeas.measureGT(object_pos);
    vpColVector zFiltUkf = markerMeas.state_to_measurement(XestUKF);
    vpColVector zFiltPF = markerMeas.state_to_measurement(XestPF);
    for (unsigned int id = 0; id < nbMarkers; ++id) {
      vpImagePoint markerProjGT(zGT[2*id + 1], zGT[2*id]);
      vpDisplay::displayCross(Idisp, markerProjGT, 5, vpColor::red);

      vpImagePoint markerProjFiltPF(zFiltPF[2*id + 1], zFiltPF[2*id]);
      vpDisplay::displayCross(Idisp, markerProjFiltPF, 5, vpColor::green);

      vpImagePoint markerProjFiltUKF(zFiltUkf[2*id + 1], zFiltUkf[2*id]);
      vpDisplay::displayCross(Idisp, markerProjFiltUKF, 5, vpColor::blue);

      vpImagePoint markerProjNoisy(z[2*id + 1], z[2*id]);
      vpDisplay::displayCross(Idisp, markerProjNoisy, 5, vpColor::black);
    }

    vpImagePoint ipText(20, 20);
    vpDisplay::displayText(Idisp, ipText, std::string("GT"), vpColor::red);
    ipText.set_i(ipText.get_i() + 20);
    vpDisplay::displayText(Idisp, ipText, std::string("Filtered by PF"), vpColor::green);
    ipText.set_i(ipText.get_i() + 20);
    vpDisplay::displayText(Idisp, ipText, std::string("Filtered by UKF"), vpColor::blue);
    ipText.set_i(ipText.get_i() + 20);
    vpDisplay::displayText(Idisp, ipText, std::string("Measured"), vpColor::black);
    vpDisplay::flush(Idisp);
    vpTime::wait(40);
    //! [Update_renderer]
#endif
    //! [Update_displays]
  }
  //! [Simu_loop]
  std::cout << "Press Enter to quit..." << std::endl;
  std::cin.get();

  return 0;
}
#else
int main()
{
  std::cout << "This example is only available if you compile ViSP in C++11 standard or higher." << std::endl;
  return 0;
}
#endif