1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
|
from core.modules.vistrails_module import Module, ModuleError
from Array import *
class ArrayOperationModule(object):
my_namespace = 'numpy|array|operations'
class ArrayReshape(ArrayOperationModule, Module):
""" Reshape the input array. The dimension sizes are presented
and used to reshape the array. Please note that the total number
of elements in the array must remain the same before and after
reshaping. """
def compute(self):
a = self.getInputFromPort("Array")
dims = self.getInputFromPort("Dims")
newdims = []
for i in xrange(dims):
pname = "dim" + str(i)
newdims.append(self.getInputFromPort(pname))
try:
a.reshape(tuple(newdims))
except:
raise ModuleError("Could not assign new shape. Be sure the number of elements remains constant")
self.setResult("Array Output", a.copy())
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, name="ReshapeArray", namespace=cls.my_namespace)
reg.add_input_port(cls, "Array", (NDArray, 'Input Array'))
reg.add_input_port(cls, "Dims", (basic.Integer, 'New Dimensionality'))
reg.add_input_port(cls, "dim0", (basic.Integer, 'Dimension Size'))
reg.add_input_port(cls, "dim1", (basic.Integer, 'Dimension Size'))
reg.add_input_port(cls, "dim2", (basic.Integer, 'Dimension Size'))
reg.add_input_port(cls, "dim3", (basic.Integer, 'Dimension Size'), True)
reg.add_input_port(cls, "dim4", (basic.Integer, 'Dimension Size'), True)
reg.add_input_port(cls, "dim5", (basic.Integer, 'Dimension Size'), True)
reg.add_input_port(cls, "dim6", (basic.Integer, 'Dimension Size'), True)
reg.add_output_port(cls, "Array Output", (NDArray, 'Output Array'))
class ArrayCumulativeSum(ArrayOperationModule, Module):
""" Get the cumulative sum of a given array. This is returned as a
flattened array of the same size as the input where each element
of the array serves as the cumulative sum up until that point."""
def compute(self):
a = self.getInputFromPort("Array")
b = a.cumulative_sum()
out = NDArray()
out.set_array(b)
self.setResult("Array Output", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Array", (NDArray, 'Input Array'))
reg.add_output_port(cls, "Array Output", (NDArray, 'Output Array'))
class ArrayScalarMultiply(ArrayOperationModule, Module):
""" Multiply the input array with a given scalar """
def compute(self):
a = self.getInputFromPort("Array")
b = self.getInputFromPort("Scalar")
out = NDArray()
out.set_array(a.get_array() * b)
self.setResult("Array Output", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Array", (NDArray, 'Input Array'))
reg.add_input_port(cls, "Scalar", (basic.Float, 'Input Scalar'))
reg.add_output_port(cls, "Array Output", (NDArray, 'Output Array'))
class ArraySort(ArrayOperationModule, Module):
def __init__(self):
Module.__init__(self)
self.axis = -1
self.kind = 'quicksort'
self.order = None
""" Sort the input array. By default, a flattened representation
of the input array is used as input to a quicksort. Optional
inputs are the axis in which to sort on and the type of sort to
use.
Sorting algorithms supported:
quicksort - best average speed, unstable
mergesort - needs additional working memory, stable
heapsort - good worst-case performance, unstable
"""
def compute(self):
a = self.getInputFromPort("Array")
if self.hasInputFromPort("Axis"):
self.axis = self.getInputFromPort("Axis")
if self.hasInputFromPort("Sort"):
self.kind = self.getInputFromPort("Sort")
if self.hasInputFromPort("Order"):
self.order = self.getInputFromPort("Order")
b = a.sort_array(axis=self.axis, kind=self.kind, order=self.order)
out = NDArray()
out.set_array(b.copy())
self.setResult("Sorted Array", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Array", (NDArray, 'Input Array'))
reg.add_input_port(cls, "Axis", (basic.Integer, 'Axis to sort'), True)
reg.add_input_port(cls, "Sort", (basic.String, 'Sort Algorithm'), True)
reg.add_input_port(cls, "Order", (basic.Integer, 'Order'),True)
reg.add_output_port(cls, "Sorted Array", (NDArray, 'Sorted Array'))
class ArrayCumulativeProduct(ArrayOperationModule, Module):
""" Get the cumulative product of a given array. This is returned as
a flattened array of the same size as the input where each element of
the array serves as the cumulative product up until that point"""
def compute(self):
a = self.getInputFromPort("Array")
b = a.cumulative_product()
out = NDArray()
out.set_array(b)
self.setResult("Array Output", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Array", (NDArray, 'Input Array'))
reg.add_output_port(cls, "Array Output", (NDArray, 'Output Array'))
class ArrayFill(ArrayOperationModule, Module):
""" Fill the input array with the given value. If no value is given
it is filled with 0.0"""
def compute(self):
a = self.getInputFromPort("Array")
if self.hasInputFromPort("Value"):
val = self.getInputFromPort("Value")
else:
val = 0.
a.fill_array(val)
self.setResult("Array Output", a)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, name="Fill Array", namespace=cls.my_namespace)
reg.add_input_port(cls, "Array", (NDArray, 'Input Array'))
reg.add_input_port(cls, "Value", (basic.Float, 'Value'))
reg.add_output_port(cls, "Array Output", (NDArray, 'Output Array'))
class ArrayResize(ArrayOperationModule, Module):
""" Resize the input array. Unlike the ArrayReshape module,
the number of elements of the array need not be conserved.
If the shape is larger than the input array size, repeated
copies of the input array will be copied to the resized version.
If the shape is smaller, the input array will be cropped appropriately.
"""
def compute(self):
a = self.getInputFromPort("Array")
dims = self.getInputFromPort("Dims")
newdims = []
for i in xrange(dims):
pname = "dim" + str(i)
newdims.append(self.getInputFromPort(pname))
try:
t = tuple(newdims)
b = a.resize(t)
out = NDArray()
out.set_array(b.copy())
except:
raise ModuleError("Could not assign new shape.")
self.setResult("Array Output", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Array", (NDArray, 'Input Array'))
reg.add_input_port(cls, "Dims", (basic.Integer, 'Output Dimensionality'))
reg.add_input_port(cls, "dim0", (basic.Integer, 'Dimension Size'))
reg.add_input_port(cls, "dim1", (basic.Integer, 'Dimension Size'))
reg.add_input_port(cls, "dim2", (basic.Integer, 'Dimension Size'))
reg.add_input_port(cls, "dim3", (basic.Integer, 'Dimension Size'), True)
reg.add_input_port(cls, "dim4", (basic.Integer, 'Dimension Size'), True)
reg.add_input_port(cls, "dim5", (basic.Integer, 'Dimension Size'), True)
reg.add_input_port(cls, "dim6", (basic.Integer, 'Dimension Size'), True)
reg.add_input_port(cls, "dim7", (basic.Integer, 'Dimension Size'), True)
reg.add_output_port(cls, "Array Output", (NDArray, 'Output Array'))
class ArrayExtractRegion(ArrayOperationModule, Module):
""" Extract a region from array as specified by the
dimension and starting and ending indices """
def compute(self):
import operator
a = self.getInputFromPort("Array")
dims = self.getInputFromPort("Dims")
a_dims = len(a.get_shape())
if dims > a_dims:
raise ModuleError("Output Dimensionality larger than Input Dimensionality")
slices = []
for i in xrange(dims):
(start, stop) = self.getInputFromPort("dim"+str(i))
slices.append(slice(start, stop))
ar = operator.__getitem__(a.get_array(), tuple(slices))
out = NDArray()
out.set_array(ar)
self.setResult("Array Output", out)
@classmethod
def register(cls, reg, basic):
l = [basic.Integer, basic.Integer]
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Array", (NDArray, 'Input Array'))
reg.add_input_port(cls, "Dims", (basic.Integer, 'Output Dimensionality'))
reg.add_input_port(cls, "dim0", l, True)
reg.add_input_port(cls, "dim1", l, True)
reg.add_input_port(cls, "dim2", l, True)
reg.add_input_port(cls, "dim3", l, True)
reg.add_input_port(cls, "dim4", l, True)
reg.add_input_port(cls, "dim5", l, True)
reg.add_input_port(cls, "dim6", l, True)
reg.add_input_port(cls, "dim7", l, True)
reg.add_output_port(cls, "Array Output", (NDArray, 'Output Array'))
class ArrayRavel(ArrayOperationModule, Module):
""" Get a 1D array containing the elements of the input array"""
def compute(self):
a = self.getInputFromPort("Array")
b = NDArray()
b.set_array(a.ravel().copy())
self.setResult("Array Output", b)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Array", (NDArray, 'Input Array'))
reg.add_output_port(cls, "Array Output", (NDArray, 'Output Array'))
class ArrayRound(ArrayOperationModule, Module):
""" Round each element of the array to the given number of
decimal places. This defaults to 0 resulting in a rounding
to integers """
def __init__(self):
Module.__init__(self)
self.decimals = 0
def compute(self):
a = self.getInputFromPort("Array")
if self.hasInputFromPort("Decimals"):
self.decimals = self.getInputFromPort("Decimals")
out = NDArray()
out.set_array(a.round(precision=self.decimals))
self.setResult("Array Output", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Array", (NDArray, 'Input Array'))
reg.add_input_port(cls, "Decimals", (basic.Integer, 'Precision'))
reg.add_output_port(cls, "Array Output", (NDArray, 'Output Array'))
class ArrayGetSigma(ArrayOperationModule, Module):
""" Return the standard deviation of elements in the array """
def __init__(self):
Module.__init__(self)
self.axis=None
def compute(self):
a = self.getInputFromPort("Array")
if self.hasInputFromPort("Axis"):
self.axis = self.getInputFromPort("Axis")
out = NDArray()
out.set_array(a.get_standard_deviation(self.axis))
self.setResult("Output Array", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, name="ArrayStandardDeviation", namespace=cls.my_namespace)
reg.add_input_port(cls, "Array", (NDArray, 'Input Array'))
reg.add_input_port(cls, "Axis", (basic.Integer, 'Axis'))
reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))
class ArraySum(ArrayOperationModule, Module):
""" Get the sum of all elements in the input array """
def compute(self):
a = self.getInputFromPort("Array")
self.setResult("Array Sum", float(a.get_sum()))
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Array", (NDArray, 'Input Array'))
reg.add_output_port(cls, "Array Sum", (basic.Float, 'Sum'))
class ArrayElementMultiply(ArrayOperationModule, Module):
""" Perform an element-wise multiply on the elements of two arrays """
def compute(self):
a1 = self.getInputFromPort("Array1")
a2 = self.getInputFromPort("Array2")
out = NDArray()
out.set_array(a1.get_array() * a2.get_array())
self.setResult("Output Array", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Array1", (NDArray, 'Input Array 1'))
reg.add_input_port(cls, "Array2", (NDArray, 'Input Array 2'))
reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))
class ArraySetElement(ArrayOperationModule, Module):
""" Set a set of array elements given arrays of values and indices
Please note that this module creates a copy of the input to operate
on to preserve the original array data. """
def compute(self):
a = self.getInputFromPort("Array")
if self.hasInputFromPort("Scalar Value"):
self.v = self.getInputFromPort("Scalar Value")
else:
self.v = self.getInputFromPort("Value Array")
if self.hasInputFromPort("Single Index"):
self.ind = self.getInputFromPort("Single Index")
else:
self.ind = self.getInputFromPort("Index Array")
out_a = a.copy()
out_a.put(self.ind, self.v)
out = NDArray()
out.set_array(out_a)
self.setResult("Output Array", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Scalar Value", (basic.Float, 'Value to Set'))
reg.add_input_port(cls, "Value Array", (NDArray, 'Values to Set'))
reg.add_input_port(cls, "Single Index", (basic.Integer, 'Index to Set'))
reg.add_input_port(cls, "Index Array", (NDArray, 'Indexes to Set'))
reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))
class ArrayVariance(ArrayOperationModule, Module):
""" Calculate the variance of the elements of an array """
def compute(self):
a = self.getInputFromPort("Array")
if self.hasInputFromPort("Axis"):
self.setResult("Variance", float(a.get_variance(axis=self.getInputFromPort("Axis"))))
else:
self.setResult("Variance", float(a.get_variance()))
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Array", (NDArray, 'Input Array'))
reg.add_input_port(cls, "Axis", (basic.Integer, 'Axis'))
reg.add_output_port(cls, "Variance", (basic.Float, 'Variance'))
class ArrayTrace(ArrayOperationModule, Module):
""" Calculate the trace of the input array.
The input array must have at least rank 2. The trace is taken
on the diagonal given by the inputs Axis1 and Axis2 using the
given Offset. If these values are not supplied, they default to:
Axis1 = 0
Axis2 = 1
Offset = 0
"""
def compute(self):
a = self.getInputFromPort("Array")
if self.hasInputFromPort("Axis1"):
self.axis1 = self.getInputFromPort("Axis1")
else:
self.axis1 = 0
if self.hasInputFromPort("Axis2"):
self.axis2 = self.getInputFromPort("Axis2")
else:
self.axis2 = 1
if self.hasInputFromPort("Offset"):
self.offset = self.getInputFromPort("Offset")
else:
self.offset = 0
self.setResult("Trace", float(a.get_trace(self.offset, self.axis1, self.axis2)))
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Array", (NDArray, 'Input Array'))
reg.add_input_port(cls, "Axis1", (basic.Integer, 'Axis 1'))
reg.add_input_port(cls, "Axis2", (basic.Integer, 'Axis 2'))
reg.add_input_port(cls, "Offset", (basic.Integer, 'Offset'))
reg.add_output_port(cls, "Trace", (basic.Float, 'Array Trace'))
class ArraySwapAxes(ArrayOperationModule, Module):
""" Create a new view of the input array with the
given axes swapped.
"""
def compute(self):
a = self.getInputFromPort("Array")
a1 = self.getInputFromPort("Axis1")
a2 = self.getInputFromPort("Axis2")
out = NDArray()
out.set_array(a.swap_axes(a1, a2).copy())
self.setResult("Output Array", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Array", (NDArray, 'Input Array'))
reg.add_input_port(cls, "Axis1", (basic.Integer, 'Axis 1'))
reg.add_input_port(cls, "Axis2", (basic.Integer, 'Axis 2'))
reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))
class ArraySqueeze(ArrayOperationModule, Module):
""" Eliminate all length-1 dimensions in the input array. """
def compute(self):
a = self.getInputFromPort("Array")
out = NDArray()
out.set_array(a.get_array().squeeze().copy())
self.setResult("Output Array", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Array", (NDArray, 'Input Array'))
reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))
class ArrayAdd(ArrayOperationModule, Module):
""" Add two arrays of the same size and shape """
def compute(self):
a1 = self.getInputFromPort("Array One").get_array()
a2 = self.getInputFromPort("Array Two").get_array()
if a1.shape != a2.shape:
raise ModuleError("Cannot add arrays with different shapes")
out = NDArray()
out.set_array(a1 + a2)
self.setResult("Output Array", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Array One", (NDArray, 'Input Array 1'))
reg.add_input_port(cls, "Array Two", (NDArray, 'Input Array 2'))
reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))
class ArrayScalarAdd(ArrayOperationModule, Module):
""" Add two arrays of the same size and shape """
def compute(self):
a1 = self.getInputFromPort("Array One").get_array()
s = self.getInputFromPort("Scalar")
out = NDArray()
out.set_array(a1 + s)
self.setResult("Output Array", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Array One", (NDArray, 'Input Array 1'))
reg.add_input_port(cls, "Scalar", (basic.Float, 'Scalar'))
reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))
class ArrayLog10(ArrayOperationModule, Module):
""" Take the base-10 log of each element in the input array """
def compute(self):
a = self.getInputFromPort("Array").get_array()
out = NDArray()
out.set_array(numpy.log10(a))
self.setResult("Output Array", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Array", (NDArray, 'Input Array'))
reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))
class ArrayAtan2(ArrayOperationModule, Module):
""" Calculate the oriented arc-tangent of a vector stored as two arrays.
Reals: Real components of complex vectors
Imaginaries: Imaginary components of complex vectors
"""
def compute(self):
r = self.getInputFromPort("Reals").get_array()
i = self.getInputFromPort("Imaginaries").get_array()
out = NDArray()
out.set_array(numpy.arctan2(r,i))
self.setResult("Output Array", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Reals", (NDArray, 'Real Components'))
reg.add_input_port(cls, "Imaginaries", (NDArray, 'Imaginary Components'))
reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))
class ArraySqrt(ArrayOperationModule, Module):
""" Calculate the element-wise square root of the input array """
def compute(self):
a = self.getInputFromPort("Input Array").get_array()
out = NDArray()
out.set_array(numpy.sqrt(a))
self.setResult("Output Array", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Input Array", (NDArray, 'Input Array'))
reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))
class ArrayThreshold(ArrayOperationModule, Module):
""" Threshold the array keeping only the values above the scalar value, v. """
def compute(self):
in_ar = self.getInputFromPort("Input Array").get_array()
v = self.getInputFromPort("Value")
r = self.forceGetInputFromPort("Replacement")
if r == None:
r = 0.
out = NDArray()
out.set_array(numpy.where(in_ar > v, in_ar, r))
self.setResult("Output Array", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Input Array", (NDArray, 'Input Array'))
reg.add_input_port(cls, "Value", (basic.Float, 'Threshold Value'))
reg.add_input_port(cls, "Replacement", (basic.Float, 'Replacement Value'))
reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))
class ArrayWindow(ArrayOperationModule, Module):
""" Threshold the array from both above and below, keeping only
the values within the window. """
def compute(self):
in_ar = self.getInputFromPort("Input Array").get_array()
lo = self.forceGetInputFromPort("Lower Bound")
hi = self.forceGetInputFromPort("Upper Bound")
r = self.forceGetInputFromPort("Replacement")
if r == None:
r = 0.
if lo == None:
lo = in_ar.min()
if hi == None:
hi = in_ar.max()
out = NDArray()
o = numpy.where(in_ar >= lo, in_ar, r)
o = numpy.where(o <= hi, o, r)
out.set_array(o)
self.setResult("Output Array", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Input Array", (NDArray, 'Input Array'))
reg.add_input_port(cls, "Lower Bound", (basic.Float, 'Lower Threshold Value'))
reg.add_input_port(cls, "Upper Bound", (basic.Float, 'Upper Threshold Value'))
reg.add_input_port(cls, "Replacement", (basic.Float, 'Replacement Value'))
reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))
class ArrayNormalize(ArrayOperationModule, Module):
""" Normalize the input array """
def compute(self):
in_ar = self.getInputFromPort("Input Array").get_array()
ar = numpy.zeros(in_ar.shape)
if self.forceGetInputFromPort("Planes"):
for i in range(in_ar.shape[0]):
p = in_ar[i] - in_ar[i].min()
ar[i] = p / p.max()
else:
ar = in_ar - in_ar.min()
ar = ar/ar.max()
out = NDArray()
out.set_array(ar)
self.setResult("Output Array", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Input Array", (NDArray, 'Input Array'))
reg.add_input_port(cls, "Planes", (basic.Boolean, 'Plane-wise normalization'), True)
reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))
class ArrayName(ArrayOperationModule, Module):
""" Assign a name or label to the entries of an array """
def compute(self):
in_ar = self.getInputFromPort("Input Array")
gen_name = self.forceGetInputFromPort("Name")
one_index = self.forceGetInputFromPort("One Indexed")
if gen_name:
in_ar.set_name(gen_name, index=one_index)
name_list = self.forceGetInputListFromPort("Row Name")
if name_list != None:
for (i,n) in name_list:
in_ar.set_row_name(n, i)
dname = self.forceGetInputFromPort("Domain Name")
if dname:
in_ar.set_domain_name(dname)
rname = self.forceGetInputFromPort("Range Name")
if rname:
in_ar.set_range_name(rname)
self.setResult("Output Array", in_ar)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Input Array", (NDArray, 'Input Array'))
reg.add_input_port(cls, "One Indexed", (basic.Boolean, 'One Indexed'))
reg.add_input_port(cls, "Name", (basic.String, 'Array Name'))
reg.add_input_port(cls, "Row Name", [basic.Integer, basic.String], True)
reg.add_input_port(cls, "Domain Name", (basic.String, 'Domain Label'))
reg.add_input_port(cls, "Range Name", (basic.String, 'Range Label'))
reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))
|