1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
import core.modules
import core.modules.module_registry
from core.modules.vistrails_module import Module, ModuleError
from Matrix import *
from Array import *
import scipy
import scipy.signal
from scipy import fftpack
import numpy
class DSPModule(object):
my_namespace = 'scipy|signals'
class SignalGenerator(DSPModule, Module):
my_namespace = 'scipy|signals|generator'
def compute(self):
samples = self.getInputFromPort("Samples")
periods = self.getInputFromPort("Periods")
freqs = self.getInputListFromPort("Frequencies")
ar = numpy.linspace(0., float(periods) * 2. * scipy.pi, periods * samples)
out_ar = numpy.zeros(periods * samples)
for f in freqs:
out_ar += scipy.sin(f * ar)
out = NDArray()
out.set_array(out_ar)
self.setResult("Output", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Samples", (basic.Integer, "Sampling Rate"))
reg.add_input_port(cls, "Periods", (basic.Integer, "Signal Length"))
reg.add_input_port(cls, "Frequencies", (basic.Float, "Additive Frequency"))
reg.add_output_port(cls, "Output", (NDArray, "Output Signal"))
class FFT(DSPModule, Module):
__doc__ = """ Calculate the discrete Fourier transform of the arbitrary
sequence presented on the Signal port. This is done using
SciPy's FFTPack module.\n\n"""
__doc__ += """From fftpack.fft:\n\t"""
__doc__ += fftpack.fft.__doc__
my_namespace = 'scipy|signals|fourier'
def compute(self):
sig_array = self.getInputFromPort("Signals")
# If there is no input on the samples port,
# use the number of samples in an array row for
# the number of fft points.
if self.hasInputFromPort("Samples"):
pts = self.getInputFromPort("Samples")
else:
try:
pts = sig_array.get_shape()[1]
except:
pts = sig_array.get_shape()[0]
sh = sig_array.get_shape()
if len(sh) < 2:
shp = (1, sh[0])
sig_array.reshape(shp)
(num_sigs, num_samps) = sig_array.get_shape()
phasors = fftpack.fft(sig_array.get_row_range(0,0), pts)
out_ar = phasors
for i in xrange(1,num_sigs):
phasors = fftpack.fft(sig_array.get_row_range(i,i), pts)
out_ar = numpy.vstack([out_ar, phasors])
out = NDArray()
out.set_array(out_ar)
self.setResult("FFT Output", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Signals", (NDArray, 'Input Signal Array'))
reg.add_input_port(cls, "Samples", (basic.Integer, 'FFT Samples'))
reg.add_output_port(cls, "FFT Output", (NDArray, 'FFT Output'))
class FFTN(DSPModule, Module):
__doc__ = """ Calculate the discrete Fourier transform of the arbitrary
sequence presented on the Signal port. This is done using
SciPy's FFTPack module.\n\n"""
__doc__ += """From fftpack.fftn:\n\t"""
__doc__ += fftpack.fftn.__doc__
my_namespace = 'scipy|signals|fourier'
def compute(self):
sig_array = self.getInputFromPort("Signals")
# If there is no input on the samples port,
# use the number of samples in an array row for
# the number of fft points.
if self.hasInputFromPort("Samples"):
pts = self.getInputFromPort("Samples")
else:
pts = sig_array.get_shape()[1]
sh = (sig_array.get_shape()[0], pts)
phasors = fftpack.fftn(sig_array.get_array(), shape=sh)
out = NDArray()
out.set_array(phasors)
self.setResult("FFT Output", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Signals", (NDArray, 'Input Signal Array'))
reg.add_input_port(cls, "Samples", (basic.Integer, 'FFT Samples'))
reg.add_output_port(cls, "FFT Output", (NDArray, 'FFT Output'))
class ShortTimeFourierTransform(DSPModule, Module):
""" Calculate the short time Fourier transform of the
sequence presented on the Signal port. This is done using
SciPy's FFTPack fft module in conjuction with an input window.
If a window is not specified, a Hamming window of the specified
size is used. """
my_namespace = 'scipy|signals|fourier'
def get_signal(self, sigs, window, offset, size):
win = scipy.zeros(sigs.shape[0])
win[offset:offset+size] = window
part = sigs * win
return part
def compute(self):
sigs = self.getInputFromPort("Signals")
sr = self.getInputFromPort("SamplingRate")
out_vol = None
if self.hasInputFromPort("Window"):
window = self.getInputFromPort("Window").get_array()
win_size = window.shape[0]
else:
win_size = self.getInputFromPort("Window Size")
window = scipy.signal.hamming(win_size)
if self.hasInputFromPort("Stride"):
stride = self.getInputFromPort("Stride")
else:
stride = int(win_size / 2)
sh = sigs.get_shape()
if len(sh) < 2:
shp = (1, sh[0])
sigs.reshape(shp)
(num_sigs, num_samps) = sigs.get_shape()
for i in xrange(num_sigs):
offset = 0
signal = sigs.get_array()[i]
# We need to do the first window here so that we
# can have something to call vstack on.
sig = self.get_signal(signal, window, offset, win_size)
im_array = fftpack.fft(sig)
offset += stride
while 1:
try:
sig = self.get_signal(signal, window, offset, win_size)
phasors = fftpack.fft(sig)
offset += stride
im_array = numpy.vstack([im_array, phasors.ravel()])
except:
break
# STFT of one signal is done. Clean up the output
(slices, freqs) = im_array.shape
ar = im_array[0:,0:sr*2]
ar = ar[0:,::-1]
if out_vol == None:
out_vol = ar
ovshape = out_vol.shape
out_vol.shape = 1, ovshape[0], ovshape[1]
else:
arshape = ar.shape
ar.shape = 1, arshape[0], arshape[1]
out_vol = numpy.vstack([out_vol, ar])
# All signals have been processed and are in the volume.
out = NDArray()
out.set_array(out_vol)
self.setResult("FFT Output", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Signals", (NDArray, 'Signal Array'))
reg.add_input_port(cls, "SamplingRate", (basic.Integer, 'Sampling Rate'))
reg.add_input_port(cls, "Window", (NDArray, 'Windowing Function'))
reg.add_input_port(cls, "Window Size", (basic.Integer, 'Window Size'))
reg.add_input_port(cls, "Stride", (basic.Integer, 'Stride'))
reg.add_output_port(cls, "FFT Output", (NDArray, 'FFT Output'))
class SignalSmoothing(DSPModule, Module):
"""
Documentation
"""
def compute(self):
window = self.getInputFromPort("Window").get_array()
in_signal = self.getInputFromPort("Signal").get_array()
to_conv = window/window.sum() # Make sure the window is normalized
if in_signal.ndim > 1:
out_ar = numpy.zeros(in_signal.shape)
else:
out_ar = numpy.zeros(1,in_signal.shape[0])
in_signal.shape = (1, in_signal.shape[0])
for row in xrange(in_signal.shape[0]):
out_ar[row] = numpy.convolve(to_conv, in_signal[row], mode='same')
out = NDArray()
out.set_array(out_ar)
self.setResult("Output Array", out)
@classmethod
def register(cls, reg, basic):
reg.add_module(cls, namespace=cls.my_namespace)
reg.add_input_port(cls, "Signal", (NDArray, "Input Signals"))
reg.add_input_port(cls, "Window", (NDArray, "Smoothing Filter"))
reg.add_output_port(cls, "Output Array", (NDArray, 'Smoothed Signals'))
# class SingleTrialPhaseLocking(DSPModule, Module):
# """
# Documentation
# """
# def get_time_indexes(self, t0, time_window):
# if time_window % 2:
# # odd number of samples: t0 +/- (window-1)/2
# tw = (time_window - 1) / 2
# else:
# tw = time_window / 2
# return (t0 - tw, t0 + tw)
# def calc_pli(self, f_n_ar, f_m_ar):
# phasors = numpy.concatenate((f_n_ar, f_m_ar))
# norm_c = numpy.sqrt(phasors.real*phasors.real + phasors.imag*phasors.imag)
# phasors /= norm_c
# mean_phasor = phasors.mean()
# pli = numpy.sqrt(mean_phasor.real*mean_phasor.real + mean_phasor.imag*mean_phasor.imag)
# return pli
# def compute(self):
# phasors = self.getInputFromPort("Phasor Array").get_array()
# time_window = self.getInputFromPort("Time Window")
# time_step = self.forceGetInputFromPort("Time Step")
# if time_step == None:
# time_step = 1
# ndims = phasors.ndim
# if ndims == 2:
# phasors.shape = (1, phasors.shape[0], phasors.shape[1])
# elif ndims == 1:
# phasors.shape = (1, phasors.shape[0], 1)
# else:
# raise ModuleError("Cannot Process Phasor set of dimension " + str(ndims))
# num_freqs = phasors[0].shape[0]
# num_times = phasors[0].shape[1]
# num_times /= time_step
# out_ar = numpy.zeros((phasors.shape[0], num_freqs, num_freqs, num_times))
# for channel in xrange(phasors.shape[0]):
# tfr = phasors[channel,:,:].squeeze()
# for f_m in xrange(tfr.shape[0]):
# f_m_row = tfr[f_m,:]
# for f_n in xrange(f_m+1, tfr.shape[0], 1):
# f_n_row = tfr[f_n,:]
# t0 = 0
# tn = 0
# (start_i, end_i) = self.get_time_indexes(t0, time_window)
# while t0 < f_m_row.shape[0]:
# f_m_range = f_m_row[max(0,start_i):min(end_i,f_m_row.shape[0]-1)]
# f_n_range = f_n_row[max(0,start_i):min(end_i,f_n_row.shape[0]-1)]
# pli = self.calc_pli(f_m_range, f_n_range)
# out_ar[channel, f_m, f_n, tn] = pli
# out_ar[channel, f_n, f_m, tn] = pli
# out_ar[channel, f_m, f_m, tn] = 1.0
# tn += 1
# t0 += time_step
# start_i += time_step
# end_i += time_step
# out = NDArray()
# out.set_array(out_ar)
# self.setResult("Output Array", out)
# @classmethod
# def register(cls, reg, basic):
# reg.add_module(cls, namespace=cls.my_namespace)
# reg.add_input_port(cls, "Phasor Array", (NDArray, 'Phasor Array'))
# reg.add_input_port(cls, "Time Step", (basic.Integer, 'Stride in the Time Domain'))
# reg.add_input_port(cls, "Time Window", (basic.Integer, 'Samples per Timeslice'))
# reg.add_output_port(cls, "Output Array", (NDArray, 'Result set'))
# class CalculatePhaseLocking(DSPModule, Module):
# """
# documentation
# """
# def Phi(self, p):
# return scipy.arctan2(p.real, p.imag)
# def compute(self):
# phasors = self.getInputFromPort("Phasor Array").get_array()
# if phasors.ndim != 3:
# raise ModuleError("Cannot handle phasor array with less than 3 dimensions")
# (trials, times, frequencies) = phasors.shape
# lowestF = self.getInputFromPort("Lowest Freq")
# # highestF = self.getInputFromPort("Highest Freq")
# Phi = self.Phi(phasors)
# gamma_ar = numpy.zeros((times, frequencies, frequencies))
# for t in range(times):
# n = lowestF
# for fn_i in range(frequencies):
# n += fn_i
# fn = fn_i + lowestF
# m = lowestF
# for fm_i in range(fn_i, frequencies, 1):
# m += fm_i
# fm = fm_i + lowestF
# DeltaPhi = (float((n+m)/(2*m))Phi[:,t,fm_i] - float((n+m)/(2*n))Phi[:,t,fn_i]) % (2. * scipy.pi)
# Gamma = exp(complex(0.,DeltaPhi))
# Gamma = Gamma.sum()
# Gamma = numpy.sqrt(Gamma * Gamma.conjugate())
# gamma_ar[t, fn_i, fm_i] = Gamma
# gamma_ar[t, fm_i, fn_i] = Gamma
# m += 1
# n += 1
# out = NDArray()
# out.set_array(gamma_ar)
# self.setResults("Gamma", out)
# @classmethod
# def register(cls, reg, basic):
# reg.add_module(cls, namespace=cls.my_namespace)
# reg.add_input_port(cls, "Phasor Array", (NDArray, 'Phasor Array'))
# reg.add_input_port(cls, "Lowest Freq", (basic.Integer, 'Lowest Frequency Phasor'))
# reg.add_output_port(cls, "Gamma", (NDArray, 'Phase Locking Volume'))
# class DifferentialPhaseLocking(DSPModule, Module):
# """
# documentation
# """
# def compute(self):
# phasors = self.getInputFromPort("Phasor Array").get_array()
# if phasors.ndim != 2:
# raise ModuleError("Cannot handle phasor array with more than 2 dimensions")
# mag = phasors.real*phasors.real + phasors.imag*phasors.imag
# mag = numpy.sqrt(mag)
# normalized = phasors / mag
|