File: EnsembleOrdering.py

package info (click to toggle)
vistrails 2.1.1-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 74,208 kB
  • ctags: 46,250
  • sloc: python: 316,267; xml: 52,512; sql: 3,627; php: 731; sh: 260; makefile: 108
file content (297 lines) | stat: -rw-r--r-- 9,968 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import core.modules
import core.modules.module_registry
from core.modules.vistrails_module import Module, ModuleError
from Array import *
import copy
import scipy
import numpy
from scipy import fftpack
import time

class EnsembleModule(object):
    my_namespace = 'scipy|signals|ensembles'

class ComputeDistance(EnsembleModule, Module):
    def compute(self):
        vol = self.getInputFromPort("Signals").get_array()
        num_im = vol.shape[0]

        out_ar = numpy.zeros((num_im, num_im))
        for i in range(num_im):
            im_i = vol[i].squeeze().flatten()
            for j in range(i+1, num_im, 1):
                im_j = vol[j].squeeze().flatten()

                d = (im_i - im_j)
                d = d * d
                d = numpy.sqrt(d.sum())

                out_ar[i,j] = d
                out_ar[j,i] = d

        out = NDArray()
        out.set_array(out_ar)
        self.setResult("Output", out)

    @classmethod
    def register(cls, reg, basic):
        reg.add_module(cls, namespace=cls.my_namespace)
        reg.add_input_port(cls, "Signals", (NDArray, 'Input Signal Planes'))
        reg.add_output_port(cls, "Output", (NDArray, 'Output Distance Matrix'))

class OrderByIndexes(EnsembleModule, Module):
    """ Order the inputs using an array containing the
    indexes they should appear in """
    def compute(self):
        vol = self.getInputFromPort("Signals")
        inds = self.getInputFromPort("Indexes")

        sh = vol.get_shape()
        vol = vol.get_array()
        inds = inds.get_array()
        out_ar = [vol[inds[0]]]
        for i in xrange(sh[0] - 1):
            i += 1
            try:
                out_ar = numpy.vstack((out_ar, [vol[inds[i]]]))
            except:
                pass

        out = NDArray()
        out.set_array(out_ar)
        self.setResult("Output", out)

    @classmethod
    def register(cls, reg, basic):
        reg.add_module(cls, namespace=cls.my_namespace)
        reg.add_input_port(cls, "Signals", (NDArray, 'Input Signal Set'))
        reg.add_input_port(cls, "Indexes", (NDArray, 'Sorted Index Set'))
        reg.add_output_port(cls, "Output", (NDArray, 'Sorted Signal Set'))

class OrderByCorrelation(EnsembleModule, Module):
    """ Order the inputs using the correlations between a given
    input index and all other slices in the volume """
    def append_slice(self, vol, sl):
        vol = numpy.vstack((vol, [sl]))
        return vol

    def append_cor(self, cor, sl_cor):
        cor.append(sl_cor)
        return cor
    
    def prepend_slice(self, vol, sl):
        vol = numpy.vstack(([sl], vol))
        return vol

    def prepend_cor(self, cor, sl_cor):
        cor.insert(0, sl_cor)
        return cor
    
    def find_max(self, a):
        f = a.max()
        sh = a.shape
        b = a.flatten()
        ind = b.argmax()
        row = int(ind/sh[1])
        col = ind - row * sh[1]
        return (row, col, f)
        
    def compute(self):
        ts = time.time()
        vol = self.getInputFromPort("Signals")
        ind = self.getInputFromPort("Key Slice")
        if self.hasInputFromPort("Normalize"):
            self.normalize = self.getInputFromPort("Normalize")
        else:
            self.normalize = False

        vol_ar = vol.get_array()
        if self.normalize:
            for i in range(vol_ar.shape[0]):
                sl = vol_ar[i]
                sl = sl - sl.min()
                sl = sl / sl.max()
                vol_ar[i] = sl

        pos = self.forceGetInputFromPort("Key Position")
            
        key_slice = vol_ar[ind]
        (r,c) = key_slice.shape
        key_fft = fftpack.fftn(key_slice)
        key_sq = key_slice * key_slice
        norm = key_sq.sum()
        norm = numpy.sqrt(norm)

        num_slices = vol.get_shape()[0]
        num_elements = key_slice.size
        cor = []
        for i in xrange(num_slices):
            cur_slice = vol_ar[i]
            cur_sq = cur_slice * cur_slice
            cur_norm = cur_sq.sum()
            cur_norm = numpy.sqrt(cur_norm)
            
            cur_fft = fftpack.fftn(cur_slice)
            cur_fft = cur_fft.conjugate()

            cur_max = cur_slice.max()
            prod_slice = key_fft * cur_fft
            prod_slice = prod_slice / (norm * cur_norm)
            cor_slice = fftpack.ifftn(prod_slice)

            (row,col,val) = self.find_max(cor_slice.real)

            cor.append((val,i,row,col))

        cor.sort(lambda x,y:cmp(y[0],x[0]))
        vol = [key_slice]
        key_slice_out = key_slice
        out_cor_ar = []
        if pos == None:
            app = True
            for i in range(len(cor)):
                sl_cor = cor[i]
                if sl_cor[1] == ind:
                    continue
                sl = vol_ar[sl_cor[1]]
                if app:
                    vol = self.append_slice(vol, sl)
                    out_cor_ar = self.append_cor(out_cor_ar, cor[i][0])
                else:
                    vol = self.prepend_slice(vol, sl)
                    out_cor_ar = self.prepend_cor(out_cor_ar, cor[i][0])
                
                app = (app != True)
        else:
            for i in range(len(cor)):
                sl_cor = cor[i]
                sl = vol_ar[sl_cor[1]]
                vol = self.append_slice(vol, sl)
                out_cor_ar = self.append_cor(out_cor_ar, cor[i][0])

        elapsed = time.time() - ts
#        elapsed *= 1000000.
        print "took: ", elapsed
        out_vol = NDArray()

        out_vol.set_array(vol/vol.max())
        out_cor = NDArray()
        out_cor_ar = numpy.array(out_cor_ar)
        out_cor.set_array(out_cor_ar / out_cor_ar.max())

        out_key = NDArray()
        out_key.set_array(key_slice_out)
        self.setResult("Output Key Slice", out_key)
        self.setResult("Output Volume", out_vol)
        self.setResult("Output Correlation", out_cor)

    @classmethod
    def register(cls, reg, basic):
        reg.add_module(cls, namespace=cls.my_namespace)
        reg.add_input_port(cls, "Signals", (NDArray, 'Input Signal Volume'))
        reg.add_input_port(cls, "Key Slice", (basic.Integer, 'Key Slice Index'))
        reg.add_input_port(cls, "Normalize", (basic.Boolean, 'Normalize Slice Power'))
        reg.add_input_port(cls, "Key Position", (basic.Integer, 'Key Slice Position'))
        reg.add_output_port(cls, "Output Volume", (NDArray, 'Sorted Signal Volume'))
        reg.add_output_port(cls, "Output Correlation", (NDArray, 'Sorted Correlation Array'))
        reg.add_output_port(cls, "Output Key Slice", (NDArray, 'Key Slice'))
        
class OrderByProgressiveCorrelation(EnsembleModule, Module):
    def find_max(self, a):
        f = a.max()
        sh = a.shape
        b = a.flatten()
        ind = b.argmax()
        row = int(ind/sh[1])
        col = ind - row * sh[1]
        return (row, col, f)
        
    def correlate(self, plane, ref_im):
        (r,c) = ref_im.shape
        key_fft = fftpack.fftn(ref_im)
        key_sq = ref_im * ref_im
        norm = key_sq.sum()
        norm = numpy.sqrt(norm)

        cur_slice = plane
        cur_sq = cur_slice * cur_slice
        cur_norm = cur_sq.sum()
        cur_norm = numpy.sqrt(cur_norm)
        
        cur_fft = fftpack.fftn(cur_slice)
        cur_fft = cur_fft.conjugate()

        cur_max = cur_slice.max()
        prod_slice = key_fft * cur_fft
        prod_slice = prod_slice / (norm * cur_norm)
        cor_slice = fftpack.ifftn(prod_slice)
        
        (row,col,val) = self.find_max(cor_slice.real)

        return val
    
    def compute(self):
        vol = self.getInputFromPort("Signals").get_array()
        ind = self.getInputFromPort("Key Slice")
        normalize = self.forceGetInputFromPort("Normalize")

        if normalize:
            for i in range(vol.shape[0]):
                sl = vol[i]
                sl = sl - sl.min()
                sl = sl / sl.max()
                vol[i] = sl
            
        tmp_vol = copy.copy(vol)

        key_slice = vol[ind]
        vol_ind = numpy.arange(vol.shape[0]).tolist()

        out_ar = numpy.zeros(vol.shape)
        out_ar[0,:,:] = key_slice
        tmp_vol[ind,:,:] = 0.0

        tmp_size = 1
        cors_out = [self.correlate(key_slice,key_slice)]
        print "key cor = ", cors_out[0]
        while tmp_size < tmp_vol.shape[0]:
            ts = time.time()
            cors = []
            print "output size is currently:  ", tmp_size, 
            for i in range(tmp_vol.shape[0]):
                plane = tmp_vol[i]
                if plane.min() == 0. and plane.max() == 0.:
                    continue

                cor = self.correlate(plane,out_ar[tmp_size-1,:,:])
                cors.append((cor,i))

            cors.sort(lambda x,y:cmp(y[0],x[0]))
            (max_cor,ind) = cors[0]
            print "\tcor = ", max_cor, ind
            cors_out.append(max_cor)
            out_ar[tmp_size,:,:] = vol[ind]
            tmp_vol[ind,:,:] = 0.
            tmp_size += 1
            elapsed = time.time() - ts
#            elapsed *= 1000000.
            print "\tCorrelation took: ", elapsed

        cor_ar = numpy.array(cors_out)
        cor_ar /= cor_ar.max()
        out = NDArray()
        out.set_array(out_ar)
        out_cor = NDArray()
        out_cor.set_array(cor_ar)

        self.setResult("Output Signals", out)
        self.setResult("Output Correlations", out_cor)

    @classmethod
    def register(cls, reg, basic):
        reg.add_module(cls, namespace=cls.my_namespace)
        reg.add_input_port(cls, "Signals", (NDArray, 'Input Time Frequency Planes'))
        reg.add_input_port(cls, "Key Slice", (basic.Integer, 'Key Slice'))
        reg.add_input_port(cls, "Normalize", (basic.Boolean, 'Normalize each plane'), True)
        reg.add_output_port(cls, "Output Signals", (NDArray, 'Output Time Frequency Planes'))
        reg.add_output_port(cls, "Output Correlations", (NDArray, 'Output Correlations'))