File: Imaging.py

package info (click to toggle)
vistrails 2.1.1-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 74,208 kB
  • ctags: 46,250
  • sloc: python: 316,267; xml: 52,512; sql: 3,627; php: 731; sh: 260; makefile: 108
file content (193 lines) | stat: -rw-r--r-- 7,618 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import core.modules
import core.modules.module_registry
from core.modules.vistrails_module import Module, ModuleError
import numpy
import scipy
import scipy.ndimage
from Array import *
from Matrix import *

class ArrayImaging(object):
    my_namespace = 'numpy|imaging'

class ExtractRGBAChannel(ArrayImaging, Module):
    """ Extract a single color channel from an array representing an
    RGBA type image.  This will return a 2D array with the single channel
    specified as the scalar elements """
    def compute(self):
        im = self.getInputFromPort("Image").get_array()
        chan = self.getInputFromPort("Channel")
        ar = im[:,:,chan]
        out = NDArray()
        out.set_array(ar)
        self.setResult("Output Array", out)

    @classmethod
    def register(cls, reg, basic):
        reg.add_module(cls, namespace=cls.my_namespace)
        reg.add_input_port(cls, "Image", (NDArray, 'Image Array'))
        reg.add_input_port(cls, "Channel", (basic.Integer, 'Channel'))
        reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))

class GaussianGradientMagnitude(ArrayImaging, Module):
    """ Calculate the Gradient Magnitude of an input NDArray using gaussian derivatives.
    The standard-deviation of the Gaussian filter are given for each axis as a sequence
    or as a single number, in which case the filter will be isotropic. """
    def compute(self):
        im = self.getInputFromPort("Image")
        sigma = self.getInputListFromPort("Sigmas")
        if len(sigma) <= 1:
            sigma = sigma[0]
        der = scipy.ndimage.gaussian_gradient_magnitude(im.get_array(), sigma)
        out = NDArray()
        out.set_array(der)
        self.setResult("Output Array", out)

    @classmethod
    def register(cls, reg, basic):
        reg.add_module(cls, namespace=cls.my_namespace)
        reg.add_input_port(cls, "Image", (NDArray, 'Image Array'))
        reg.add_input_port(cls, "Sigmas", (basic.Float, 'Standard Deviations'))
        reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))

class JointHistogram(ArrayImaging, Module):
    """ Calculate the Joint Histogram of 2 inputs.  The inputs can be of arbitrary dimension,
    but must be equivalently sized. """
    def compute(self):
        in_x = self.getInputFromPort("Array One").get_array()
        in_y = self.getInputFromPort("Array Two").get_array()
        size_x = self.getInputFromPort("Bins X")
        size_y = self.getInputFromPort("Bins Y")

        take_log = True
        if self.hasInputFromPort("Log10"):
            take_log = self.getInputFromPort("Log10")

        out_ar = numpy.zeros((size_x, size_y))
        min_x = in_x.min()
        max_x = in_x.max() - min_x
        min_y = in_y.min()
        max_y = in_y.max() - min_y

        in_x = in_x.flatten()
        in_y = in_y.flatten()

        for i in xrange(in_x.size):
            x_cor = int(((in_x[i] - min_x)/max_x) * (size_x - 1))
            y_cor = int(((in_y[i] - min_y)/max_y) * (size_y - 1))

            out_ar[x_cor,y_cor] += 1.0

        if take_log:
            out_ar = out_ar + 1.0
            out_ar = scipy.log(out_ar)
        out = NDArray()
        out_ar = out_ar.transpose()
        out_ar = out_ar[::-1]
        out.set_array(out_ar)
        self.setResult("Joint Histogram", out)

    @classmethod
    def register(cls, reg, basic):
        reg.add_module(cls, namespace=cls.my_namespace)
        reg.add_input_port(cls, "Array One", (NDArray, 'X Axis Input'))
        reg.add_input_port(cls, "Array Two", (NDArray, 'Y Axis Input'))
        reg.add_input_port(cls, "Log10", (basic.Boolean, 'Use Log of Histogram'), True)
        reg.add_input_port(cls, "Bins X", (basic.Integer, 'Number of X Bins'))
        reg.add_input_port(cls, "Bins Y", (basic.Integer, 'Number of Y Bins'))
        reg.add_output_port(cls, "Joint Histogram", (NDArray, 'Joint Histogram'))

class GaussianSmooth(ArrayImaging, Module):
    """ Smooth the Input array with a multi-dimensional gaussian kernel.
    The standard-deviation of the Gaussian filter are given for each axis as a sequence
    or as a single number, in which case the filter will be isotropic. """
    def compute(self):
        im = self.getInputFromPort("Input Array")
        sigma = self.getInputListFromPort("Sigmas")
        if len(sigma) <= 1:
            sigma = sigma[0]
        der = scipy.ndimage.gaussian_filter(im.get_array(), sigma)
        out = NDArray()
        out.set_array(der)
        self.setResult("Output Array", out)

    @classmethod
    def register(cls, reg, basic):
        reg.add_module(cls, namespace=cls.my_namespace)
        reg.add_input_port(cls, "Input Array", (NDArray, 'Image Array'))
        reg.add_input_port(cls, "Sigmas", (basic.Float, 'Standard Deviations'))
        reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))
        
class MedianFilter(ArrayImaging, Module):
    """ Smooth the Input array with a multi-dimensional median filter.  """
    def compute(self):
        im = self.getInputFromPort("Input Array")
        k_size = self.getInputFromPort("Size")
        der = scipy.ndimage.median_filter(im.get_array(), size=k_size)
        out = NDArray()
        out.set_array(der)
        self.setResult("Output Array", out)

    @classmethod
    def register(cls, reg, basic):
        reg.add_module(cls, namespace=cls.my_namespace)
        reg.add_input_port(cls, "Input Array", (NDArray, 'Image Array'))
        reg.add_input_port(cls, "Size", (basic.Integer, 'Kernel Size'))
        reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array'))

class ImageDifference(ArrayImaging, Module):
    """ Calculate the difference between two input images. """
    def compute(self):
        im = self.getInputFromPort("Input 1")
        im2 = self.getInputFromPort("Input 2")

        da_ar = im.get_array() - im2.get_array()
        da_ar = numpy.abs(da_ar)

        out = NDArray()
        out.set_array(da_ar)
        self.setResult("Output", out)

    @classmethod
    def register(cls, reg, basic):
        reg.add_module(cls, namespace=cls.my_namespace)
        reg.add_input_port(cls, "Input 1", (NDArray, 'Image Array'))
        reg.add_input_port(cls, "Input 2", (NDArray, 'Image Array'))
        reg.add_output_port(cls, "Output", (NDArray, 'Output Array'))

class ImageNormalize(ArrayImaging, Module):
    """ Move the range of the image to [0,1] """
    def compute(self):
        im = self.getInputFromPort("Input")
        im_max = im.get_array().max()
        im_ar = im.get_array() / im_max

        out = NDArray()
        out.set_array(im_ar)
        self.setResult("Output", out)

    @classmethod
    def register(cls, reg, basic):
        reg.add_module(cls, namespace=cls.my_namespace)
        reg.add_input_port(cls, "Input", (NDArray, 'Image Array'))
        reg.add_output_port(cls, "Output", (NDArray, 'Output Array'))

class SobelGradientMagnitude(ArrayImaging, Module):
    """ Use n-dimensional sobel kernels to compute the gradient magnitude
    of an image """
    def compute(self):
        im = self.getInputFromPort("Input").get_array()
        mag = numpy.zeros(im.shape)
        for i in xrange(im.ndim):
            kern = scipy.ndimage.sobel(im, axis=i)
            mag += kern*kern

        out = NDArray()
        out.set_array(numpy.sqrt(mag))
        self.setResult("Output", out)

    @classmethod
    def register(cls, reg, basic):
        reg.add_module(cls, namespace=cls.my_namespace)
        reg.add_input_port(cls, "Input", (NDArray, 'Image Array'))
        reg.add_output_port(cls, "Output", (NDArray, 'Output Array'))