File: DSP.py

package info (click to toggle)
vistrails 2.1.1-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 74,208 kB
  • ctags: 46,250
  • sloc: python: 316,267; xml: 52,512; sql: 3,627; php: 731; sh: 260; makefile: 108
file content (150 lines) | stat: -rw-r--r-- 4,984 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
############################################################################
##
## Copyright (C) 2006-2007 University of Utah. All rights reserved.
##
## This file is part of VisTrails.
##
## This file may be used under the terms of the GNU General Public
## License version 2.0 as published by the Free Software Foundation
## and appearing in the file LICENSE.GPL included in the packaging of
## this file.  Please review the following to ensure GNU General Public
## Licensing requirements will be met:
## http://www.opensource.org/licenses/gpl-license.php
##
## If you are unsure which license is appropriate for your use (for
## instance, you are interested in developing a commercial derivative
## of VisTrails), please contact us at contact@vistrails.org.
##
## This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
## WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
##
############################################################################
import core.modules
import core.modules.module_registry
from core.modules.vistrails_module import Module, ModuleError
from SciPy import SciPy
from Matrix import *
import scipy
from scipy import sparse, fftpack
import numpy

#################################################################

class DSP(SciPy):
    def compute(self):
        pass

class FFT(DSP):
    def compute(self):
        mat = self.getInputFromPort("Signals")
        pts = self.getInputFromPort("FFT Samples")

        phasors = fftpack.fft(mat.matrix.data, pts)
        outmat = sparse.csc_matrix(phasors)
        out = SparseMatrix()
        out.matrix = outmat
        self.setResult("FFT Output", out)

class FFT2(DSP):
    def compute(self):
        mat = self.getInputFromPort("Signals")

        phasors = fftpack.fftn(mat.matrix.data)
        outmat = sparse.csc_matrix(phasors)
        out = SparseMatrix()
        out.matrix = outmat
        self.setResult("FFT Output", out)

class WindowedFourierTransform(DSP):
    def compute(self):
        mat = self.getInputFromPort("Signal")
        
        sr = self.getInputFromPort("Sampling Rate")
        if self.hasInputFromPort("Window Size"):
            window = self.getInputFromPort("Window Size")
        else:
            window = sr

        if self.hasInputFromPort("Stride"):
            stride = self.getInputFromPort("Stride")
        else:
            stride = int(sr / 2)

        
        signal_array = mat.matrix.toarray().ravel()

        # We now have a 1-D array that we can have good indexing into
        pad = signal_array[0:int(window/2)]
        signal_array = numpy.concatenate((pad,signal_array))
        win_low = 0
        win_hi = window - 1
        phasors = fftpack.fft(signal_array[win_low:win_hi])
        out_array = phasors.ravel()

        win_low += stride
        win_hi += stride

        while win_hi < signal_array.shape[0]:
            phasors = fftpack.fft(signal_array[win_low:win_hi])
            win_low += stride
            win_hi += stride
            out_array = numpy.vstack([out_array, phasors.ravel()])

        out = SparseMatrix()
        out.matrix = sparse.csc_matrix(out_array)
        self.setResult("FFT Output", out)

class ShortTimeFourierTransform(DSP):
    def get_signal(self, sigs, window, offset, size):
        win = scipy.zeros(sigs.shape[0]).ravel()
        win[offset:offset+size] = window.ravel()
        part = sigs * win
        return part
    
    def compute(self):
        mat = self.getInputFromPort("Signal")
        sr = self.getInputFromPort("Sampling Rate")

        if self.hasInputFromPort("Window"):
            window = self.getInputFromPort("Window").matrix.toarray()
            win_size = window.shape[1]
        else:
            win_size = self.getInputFromPort("WindowSize")
            window = scipy.signal.hamming(win_size)

        if self.hasInputFromPort("Stride"):
            stride = self.getInputFromPort("Stride")
        else:
            stride = int(win_size / 2)

        signal_array = mat.matrix.transpose().toarray().ravel()

        samples = signal_array.shape[0]

        offset = 0
        sig = self.get_signal(signal_array, window, offset, win_size)
        phasors = fftpack.fft(sig).ravel()
        out_array = phasors
        offset += stride

        i = 1
        while 1:
            try:
                sig = self.get_signal(signal_array, window, offset, win_size)
                phasors = fftpack.fft(sig)
                offset += stride
                out_array = numpy.vstack([out_array, phasors.ravel()])
                i += 1
            except:
                break

        (slices, freqs) = out_array.shape
        ar = out_array[0:,0:sr*2]
        ar = ar[0:,::-1]

        out = SparseMatrix()
        sigout = SparseMatrix()
        sigout.matrix = sparse.csc_matrix(signal_array)
        out.matrix = sparse.csc_matrix(ar)
        self.setResult("Signal Output", sigout)
        self.setResult("FFT Output", out)