1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
import core.modules
import core.modules.module_registry
from core.modules.vistrails_module import Module, ModuleError
from SciPy import SciPy
from Matrix import *
import scipy
import scipy.signal
from scipy import sparse, fftpack
import numpy
class DSPFilters(SciPy):
def compute(self):
pass
class HanningWindow(DSPFilters):
def compute(self):
size = self.getInputFromPort("Window Size")
out = SparseMatrix()
out.matrix = sparse.csc_matrix(scipy.signal.hanning(size))
self.setResult("Window", out)
class TriangularWindow(DSPFilters):
def compute(self):
size = self.getInputFromPort("Window Size")
out = SparseMatrix()
out.matrix = sparse.csc_matrix(scipy.signal.triang(size))
self.setResult("Window", out)
class BlackmanWindow(DSPFilters):
def compute(self):
size = self.getInputFromPort("Window Size")
out = SparseMatrix()
out.matrix = sparse.csc_matrix(scipy.signal.blackman(size))
self.setResult("Window", out)
class BlackmanHarrisWindow(DSPFilters):
def compute(self):
size = self.getInputFromPort("Window Size")
out = SparseMatrix()
out.matrix = sparse.csc_matrix(scipy.signal.blackmanharris(size))
self.setResult("Window", out)
class ParzenWindow(DSPFilters):
def compute(self):
size = self.getInputFromPort("Window Size")
out = SparseMatrix()
out.matrix = sparse.csc_matrix(scipy.signal.parzen(size))
self.setResult("Window", out)
class HammingWindow(DSPFilters):
def compute(self):
size = self.getInputFromPort("Window Size")
out = SparseMatrix()
out.matrix = sparse.csc_matrix(scipy.signal.hamming(size))
self.setResult("Window", out)
class KaiserWindow(DSPFilters):
def compute(self):
size = self.getInputFromPort("Window Size")
beta = self.getInputFromPort("Beta")
out = SparseMatrix()
out.matrix = sparse.csc_matrix(scipy.signal.kaiser(size, beta))
self.setResult("Window", out)
class BartlettHannWindow(DSPFilters):
def compute(self):
size = self.getInputFromPort("Window Size")
out = SparseMatrix()
out.matrix = sparse.csc_matrix(scipy.signal.barthann(size))
self.setResult("Window", out)
class GaussianWindow(DSPFilters):
def compute(self):
size = self.getInputFromPort("Window Size")
sigma = self.getInputFromPort("Sigma")
out = SparseMatrix()
out.matrix = sparse.csc_matrix(scipy.signal.gaussian(size, sigma))
self.setResult("Window", out)
class BoxcarWindow(DSPFilters):
def compute(self):
size = self.getInputFromPort("Window Size")
out = SparseMatrix()
out.matrix = sparse.csc_matrix(scipy.signal.boxcar(size))
self.setResult("Window", out)
class BohmanWindow(DSPFilters):
def compute(self):
size = self.getInputFromPort("Window Size")
out = SparseMatrix()
out.matrix = sparse.csc_matrix(scipy.signal.bohman(size))
self.setResult("Window", out)
class BartlettWindow(DSPFilters):
def compute(self):
size = self.getInputFromPort("Window Size")
out = SparseMatrix()
out.matrix = sparse.csc_matrix(scipy.signal.bartlett(size))
self.setResult("Window", out)
class NuttallBlackmanHarrisWindow(DSPFilters):
def compute(self):
size = self.getInputFromPort("Window Size")
out = SparseMatrix()
out.matrix = sparse.csc_matrix(scipy.signal.nuttall(size))
self.setResult("Window", out)
|