1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
############################################################################
##
## Copyright (C) 2006-2007 University of Utah. All rights reserved.
##
## This file is part of VisTrails.
##
## This file may be used under the terms of the GNU General Public
## License version 2.0 as published by the Free Software Foundation
## and appearing in the file LICENSE.GPL included in the packaging of
## this file. Please review the following to ensure GNU General Public
## Licensing requirements will be met:
## http://www.opensource.org/licenses/gpl-license.php
##
## If you are unsure which license is appropriate for your use (for
## instance, you are interested in developing a commercial derivative
## of VisTrails), please contact us at contact@vistrails.org.
##
## This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
## WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
##
############################################################################
import core.modules
import core.modules.module_registry
from core.modules.vistrails_module import Module, ModuleError
from SciPy import SciPy
from Matrix import Matrix, COOMatrix, SparseMatrix, CSRMatrix
from scipy import sparse
import numpy, scipy
class MatrixConvert(SciPy):
def compute(self):
m = self.getInputFromPort("InputMatrix")
to = self.getInputFromPort("OutputType")
to = to.upper()
if to == 'Dense':
self.matrix = DenseMatrix(m.matrix.todense())
self.setResult("SparseOutput", self.matrix)
else:
self.matrix = SparseMatrix(m.matrix.tocsc())
self.setResult("SparseOutput", self.matrix)
class vtkDataSetToMatrix(SciPy):
''' In some cases, particularly in terms of user-defined VTK Filters, the
output of the filter is a vtk datatype representing '''
def from_unstructured_grid(self, vtkalgout):
import vtk
prod = vtkalgout.vtkInstance.GetProducer()
prod.Update()
grid = prod.GetOutput()
pt_set = grid.GetPoints()
scalars = grid.GetPointData().GetScalars()
''' Points in vtk are always 3D... so we must assume this. '''
self.matrix_ = SparseMatrix()
self.matrix_.matrix = sparse.csc_matrix((grid.GetNumberOfPoints(), 3))
i = 0
while i < grid.GetNumberOfPoints():
(x,y,z) = pt_set.GetPoint(i)
self.matrix_.matrix[i,0] = x
self.matrix_.matrix[i,1] = y
self.matrix_.matrix[i,2] = z
print x, y, z
i += 1
def compute(self):
if self.hasInputFromPort("vtkUnstructuredGrid"):
self.from_unstructured_grid(self.getInputFromPort("vtkUnstructuredGrid"))
else:
pass
self.setResult("Output Matrix", self.matrix_)
class PhaseHistogramToVTKPoints(SciPy):
def form_point_set(self, histo, point_set):
(slices, numbins) = histo.shape
phases = numpy.arange(numbins)
phases = phases * (360. / numbins)
phases += phases[1] / 2.
phi_step = phases[0]
for time in xrange(slices):
z = float(time)
for bin in xrange(numbins):
r = histo[time,bin]
theta = phi_step * (bin+1)
theta *= (scipy.pi / 180.)
x = r*scipy.cos(theta)
y = r*scipy.sin(theta)
point_set.InsertNextPoint(x, y, z)
for bin in xrange(numbins):
curbin = bin
lastbin = bin-1
if lastbin < 0:
lastbin = numbins-1
r = (histo[time,bin] - histo[time,lastbin]) / 2.
theta = curbin * 360. / numbins
x = r*scipy.cos(theta)
y = r*scipy.sin(theta)
point_set.InsertNextPoint(x, y, z)
def compute(self):
import vtk
phasors = self.getInputFromPort("FFT Input")
numbins = self.getInputFromPort("Num Bins")
phasor_matrix = phasors.matrix.toarray()
(timeslices,phases) = phasor_matrix.shape
point_set = vtk.vtkPoints()
histo = numpy.zeros((timeslices, numbins))
for time in xrange(timeslices):
phase_slice = phasor_matrix[time,:]
reals = phase_slice.real
imaginary = phase_slice.imag
phases = scipy.arctan2(imaginary, reals)
phases = phases * (180. / scipy.pi)
bins = phases % numbins
for b in bins:
histo[time,b] += 1
self.form_point_set(histo, point_set)
pointdata = vtk.vtkUnstructuredGrid()
pointdata.SetPoints(point_set)
self.surf_filter = vtk.vtkSurfaceReconstructionFilter()
self.surf_filter.SetInput(0,pointdata)
# self.surf_filter.Update()
reg = core.modules.module_registry
vtk_set = reg.registry.get_descriptor_by_name('edu.utah.sci.vistrails.vtk', 'vtkAlgorithmOutput').module()
vtk_set.vtkInstance = self.surf_filter.GetOutputPort()
histo_mat = SparseMatrix()
histo_mat.matrix = sparse.csc_matrix(histo)
self.setResult("Num Slices", timeslices)
self.setResult("Phase Histogram", histo_mat)
self.setResult("Phase Geometry", vtk_set)
|