1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
|
# ------------------------------------------------------------------
# 10.8.08
# Adding
# Point in ploygon Function
# (This is a more basic/generic version of the
# the point.in.polygon.contours() function in
# rel.abundance.mapping.functions3.r.
#
#
# 10.6.08
# Adding Functions:
# Point in ShapeFile Function
# NOTE: This function is based on the NCEAS function XXXXXX
# except that I needed to fix the donut hole problem with
# the shape files. I need to finish documenting this and
# send it back to those guys!
# Initialize Map Gridding
# Needed ==> a more generic regional.cluster.cloropleth.map()
#
# ------------------------------------------------------------------
#------------------------------------------------------------------------------------------------------------
#------------------------------------------------------------------------------------------------------------
# SBT: Better ST Maps
# -------------------------------------
# 9.9.08
#
# Produce maps and save them to disk.
# Based on "st.bdt.surface.maps.9.9.R"
#
# 10.20.08 Modifications
# -----------------------------------------
# 1) Added code include the leading zeros on the map.filename
# This produces files that will be sequentially ordered in file browsers!
# Small but important "convenience" modification.
# 2) Also added call to the function initizalize.map.grid() in
# st.clustering.functions.2.R format maps automatically
# 3) Assumed additional parameters
# begin.seq
# end.seq
#
# 10/24/08
# -------------------
# * Added code & switch to deal with sqrt transform
# # Response Transformation code: resp.transformation.code <- "sqrt"
# * Excluded the extraneous spatial density contours
#
# 11/19/08
# -------------
# google earth maps - transparent & no margin plots.
#
#
# REQUIRES
# ------------------------
#"eBird taxonomy file.csv",
#"yelwar.East.travel.spatial.density.contours.RData",se
#~ # ------------------------
#~ # control.data
#~ # ------------------------
#~ # (spp.code, spatial.extent, exp.tag, ST.group)
#~ # ST groups
#~ # A - 156 - 1 per week 2004-06
#~ # B - 36 - 1 per month 2004 -2006
#~ # C -26 - 1per 2 weeks 2006
#~ # ------------------------
#~ "amekes", US, stbdt.8.19., B
#~ "buffle",US, stbdt.8.19., C
#~ "buwwar",East, stbdt.8.19., B
#~ "barswa", US, stbdt.9.3.,C
#~ "cavswa", SoTX, stbdt.9.3.,C
#~ "cliswa", US, stbdt.9.3.,C
#------------------------------------------------------------------------------------------------------------
#------------------------------------------------------------------------------------------------------------
## KFW
require(fields)
# These are legacy code for spatial contours
# They will need to be intergrated with current functions
# if this functions stays!
# -------------------------------------------------------------------
# Poisson Predictive Performance Measures
# -------------------------------------------------------------------
# yyy = observations
# ppp = predicted value - response scale
#
# Verified - replicated GAM deviance calcuatlions for poisson
poisson.deviance <- function(yyy,ppp){
# if predictions (ppp) equal zero we will get underflow
# problems from log function.
# -------------
# break deviance into two pieces - where obs == 0
ttt.zero <- (yyy == 0)
ttt.pos <- (yyy > 0)
dev1 <- sum( (yyy[ttt.zero] - ppp[ttt.zero]) )
dev2 <- sum( yyy[ttt.pos]*(log(yyy[ttt.pos])-log(ppp[ttt.pos])) -
(yyy[ttt.pos] - ppp[ttt.pos]))
dev <- 2*(dev2 - dev1)
return(dev)
}
deviance.explained <- function(yyy,ppp){
null.deviance <- poisson.deviance(yyy, rep(mean(yyy),length(yyy) ))
obs.deviance <- poisson.deviance(yyy,ppp)
deviance.explained <- (null.deviance - obs.deviance)/null.deviance
de <- list(deviance.explained=deviance.explained,
obs.deviance=obs.deviance,
null.deviance=null.deviance)
return(de)
}
poisson.pearson <- function(yyy,ppp){
p <- sum( ((yyy - ppp)^2)/(ppp) )
return(p)
}
# Accuracy of 0-1 Classification for Poisson Regression
# ---------------------------------------------------------
poisson.accuracy <- function(yyy, ppp, threshold=0.5){
y.binary <- as.numeric(yyy > threshold)
p.binary <- as.numeric(ppp > threshold)
acc <- 1-sum(abs(y.binary - p.binary))/length(y.binary)
return(acc)
}
# -------------------------------------------------------------------
# -------------------------------------------------------------------
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# Measure Predictive performance as a function of Spatial Scale
# -----------------------------------------------------------------------------
# Daniel Fink
# 1.9.08
# 2.7.08 modifications
#
# Description
# -----------------
# This function Measures the predictive performance as a function of
# Spatial Scale. It takes the bs.model object from a single test/training
# split and bins/grids this data across a range of scales. Performance
# is computed and recorded at each scale and passed back to the user.
# Predictive performance is computed on the test set.
# Predictive performance may also be plotted as a function of scale.
#
# Currently, the function will take the entire spatial extent analyzed/
# in the data set, p.data.
#
# Input
# ----------
# p.data,
# dtm.obj,
# grid.size.seq,
# grid.size.units = "cells",
# file.name=NULL,
# plot.it=FALSE,
# plot.height=600
# plot.width=800
#
# Output
# ----------
# pred.performance[iii,1] <- perf.ttt$deviance.explained
# pred.performance[iii,2] <- perf.ttt$obs.deviance
# pred.performance[iii,3] <- poisson.pearson(zzz.size[ttt.ind],ppp.size[ttt.ind] )
# # Total number of grid cells that have test-set observations
# pred.performance[iii,4] <- NROW(image.pred$ind)
# # Median # of observations/grid cell, in grid cells with observations
# pred.performance[iii,5] <- median(image.pred$weights[image.pred$ind])
# # Grid Size in units of cells
# pred.performance[iii,6] <- grid.size[iii]
# # Grid Size in units of (approximate) km^2
# pred.performance[iii,7] <- grid.size[iii]
#
#
# Notes:
# ---------
#
# Further Development:
# ----------------------------
# * include km2 as units
# Check out the web page at
# http://www.movable-type.co.uk/scripts/latlong.html
# for the Haversine formula
# * inlcude control over spatial.extent
# -----------------------------------------------------------------------------
spatial.performance.plot <- function(
xxx,
yyy,
ppp, # predicted
zzz, #obs
spatial.extent=NULL,
#dtm.obj,
grid.size.seq,
grid.size.ratio = 2,
grid.size.units = "cells",
# ----------------------------
file.name=NULL,
plot.it=NULL,
span=0.3,
plot.height=600,
plot.width=800){
# ------------------------------------------
# Dummy Values
# ------------------------------------------
# xxx = test.data$X$x[subset.index]
# yyy = test.data$X$y[subset.index]
# ppp = test.pred$mean[subset.index] predicted
# zzz = test.data$y[subset.index] observed
# spatial.extent = spatial.extent
# grid.size.seq = grid.size.seq
# grid.size.ratio = 1.0
# file.name=NULL
# plot.it=TRUE
#
# spatial.extent <- list(
# # NE Region
# lat.max = 50.0,
# lat.min = 25.0,
# lon.min= -100.0,
# lon.max = -67.0 )
# file.name <- FALSE
# plot.it <- TRUE
# n.sizes <- 50
# grid.size.seq <- round(seq(from=5, to=120, length=n.sizes))
# -----------------------------------
# verification
#length(xxx)
#length(yyy)
#length(ppp)
#length(zzz)
# image.pred <- as.image(ppp, x= data.frame(xxx,yyy),
# nrow=40,
# ncol=40, na.rm=TRUE)
# image.plot(image.pred)
# map('state',add=TRUE, lwd=1, col="grey")
# ------------------------------------------
# Initial Values
# ------------------------------------------
n.sizes <- length(grid.size.seq)
pred.performance <- matrix(0, n.sizes, 20)
# Covert grid sizes to both units
# -----------------------------------------
# ------------------------------------------
# Compute Baseline-Point Performance
# ------------------------------------------
epsilon <- 1e-8
#ppp <- ddd$pred.Xp
#obs <- p.data$yp
obs <- zzz
ttt.index <- ppp == 0
ppp[ttt.index] <- epsilon
ttt.ind <- !is.na(ppp)
test.dev <- deviance.explained(obs[ttt.ind],ppp[ttt.ind])$deviance.explained
test.pearson <- poisson.pearson(obs[ttt.ind], ppp[ttt.ind])
# ------------------------------------------
# Compute Performance across scales
# ------------------------------------------
for (iii in 1:n.sizes){
# -------------------------
# if (!is.null(spatial.extent)){
# # Add two points based on spatial extent
# # Idea is to set spatial extent manually
# # I should rewrite the binning myself!
# # small bias caused in perf. metrics
# ppp.ip <- c(ppp,0,0)
# zzz.ip <- c(zzz,0,0)
# xxx.ip <- c(xxx,spatial.extent$lon.min,spatial.extent$lon.max)
# yyy.ip <- c(yyy,spatial.extent$lat.min,spatial.extent$lat.max)
# image.pred <- as.image(ppp.ip, x= data.frame(xxx.ip,yyy.ip),
# nrow=grid.size.seq[iii]*grid.size.ratio,
# ncol=grid.size.seq[iii] , na.rm=TRUE)
# image.obs <- as.image(zzz.ip, x= data.frame(xxx.ip,yyy.ip),
# nrow=grid.size.seq[iii]*grid.size.ratio,
# ncol=grid.size.seq[iii], na.rm=TRUE)
# }
# -----------------------
#if (is.null(spatial.extent)){
image.pred <- as.image(ppp, x= data.frame(xxx,yyy),
nrow=grid.size.seq[iii]*grid.size.ratio,
ncol=grid.size.seq[iii] , na.rm=TRUE)
image.obs <- as.image(zzz, x= data.frame(xxx,yyy),
nrow=grid.size.seq[iii]*grid.size.ratio,
ncol=grid.size.seq[iii]) #, na.rm=TRUE)
# Form a common na index
# ---------------------------
ddd.na.ind <- !is.na(image.pred$weights)
d2.na.ind <- ddd.na.ind & !is.na(image.obs$weights)
ppp.size <- image.pred$z[d2.na.ind ]
zzz.size <- image.obs$z[d2.na.ind ]
length(ppp.size)
length(zzz.size)
# -------------------------------------
# Clean Predictions for Dev. Calcs
# -------------------------------------
# Substitute predicted zero's with small values
ttt.index <- ppp.size == 0
ppp.size[ttt.index] <- epsilon
# Remove any NA's - several occurr with GAM models
ttt.ind <- !is.na(ppp.size)
# -------------------------------------
perf.ttt <- deviance.explained(zzz.size[ttt.ind], ppp.size[ttt.ind])
pred.performance[iii,1] <- perf.ttt$deviance.explained
pred.performance[iii,2] <- perf.ttt$obs.deviance
pred.performance[iii,3] <- poisson.pearson(zzz.size[ttt.ind],ppp.size[ttt.ind] )
# Total number of grid cells that have test-set observations
# This is the sample size at this scale
ip.ind <- !is.na(image.pred$weight)
pred.performance[iii,4] <- sum(ip.ind)
# Mean Squared error and scaled RMSE
pred.performance[iii,5] <- sqrt(
mean((zzz.size[ttt.ind]-ppp.size[ttt.ind])^2))
pred.performance[iii,6] <- sqrt(
mean(((zzz.size[ttt.ind]-ppp.size[ttt.ind])/
ppp.size[ttt.ind]) ))
# -----------------------------
# Add more
# -------------------------
#MSE
pred.performance[iii,11] <- mean((ppp.size - zzz.size)^2)
#R2
pred.performance[iii,12] <- 1 - mean((ppp.size - zzz.size)^2)/
mean((mean(zzz.size) - zzz.size)^2)
#MSE.sqrt
pred.performance[iii,13] <- mean((sqrt(ppp.size) - sqrt(zzz.size))^2)
#R2.sqrt
pred.performance[iii,14] <- 1 - mean((sqrt(ppp.size) - sqrt(zzz.size))^2)/
mean((mean(sqrt(zzz.size)) - sqrt(zzz.size))^2)
#MAD
pred.performance[iii,15]<- mean(abs(ppp.size - zzz.size))
#rho
pred.performance[iii,16]<- cor(zzz.size,ppp.size)
#rho.sqrt
pred.performance[iii,17]<- cor(sqrt(zzz.size),sqrt(ppp.size))
# --------------------------------
# Median # of observations/grid cell, in grid cells with observations
pred.performance[iii,7] <- median(image.pred$weights[ip.ind])
pred.performance[iii,8] <- sd(image.pred$weights[ip.ind])
# Grid Size in units of cells
pred.performance[iii,9] <- grid.size.seq[iii]
# Grid Size in units of (approximate) km^2
# --------------------------------------------------
# Great Circle Distance Formula using decimal degrees:
# Where r is the radius of the earth in whatever units you desire.
#r <-3437.74677 (nautical miles)
r <- 6378.7 #(kilometers)
#r<-3963.0 (statute miles)
# Assume we are at centered at 40 Lat and 100 lon
lat1 <- 40
lon1 <- -100
# Step size from image grid
lat2 <- lat1 + (image.pred$y[2]- image.pred$y[1])
lon2 <- lon1 #+ (image.pred$x[2]- image.pred$x[1])
cell.height.km <- r * acos(sin(lat1/57.2958) * sin(lat2/57.2958) +
cos(lat1/57.2958) * cos(lat2/57.2958) *
cos(lon2/57.2958 -lon1/57.2958))
lat2 <- lat1 #+ (image.pred$y[2]- image.pred$y[1])
lon2 <- lon1 + (image.pred$x[2]- image.pred$x[1])
cell.width.km <- r * acos(sin(lat1/57.2958) * sin(lat2/57.2958) +
cos(lat1/57.2958) * cos(lat2/57.2958) *
cos(lon2/57.2958 -lon1/57.2958))
pred.performance[iii,10] <- cell.width.km*cell.height.km
} # end for loop
# ----------------------------------------------------------
# pred.performance
# ------------------------------------------
# Plot Performance vs Spatial Scale
# ------------------------------------------
if (!is.null(file.name)){
png(file=file.name,
bg="white",
width = plot.width,
height = plot.height)
}
if (!is.null(file.name) | !is.null(plot.it)){
# --------------------------------------
# ** dual x-labels for # cells and km2 would be cool
# ** draw Base-Line at point-level predictive performance
# ** adaptively set maximum y-axis value?
# ** plot smoothed performance trajectory??
# --------------------------------------
ymin <- min(c( 0.9*min(pred.performance[,1]), 0.9*test.dev) )
ymax <- max( c( 1.1*max(pred.performance[,1]), 1.1*test.dev) )
plot(pred.performance[,9],
pred.performance[,1],
ylim=c(ymin,ymax),
type="p",
lwd=2.0,
col="red",
xlab=" # latitude cells ",
ylab=" Percent Deviance Explained",
main="Performance vs Scale" )
# Smoothed Performance
# Smoothed Performance
lines(lowess(pred.performance[,9], pred.performance[,1],
f=span),
lwd=2.0,
col="red")
# baseline performance
lines(range(pred.performance[,9]),
c(test.dev, test.dev),
lwd=2.0,
col="black")
}
if (!is.null(file.name)) dev.off()
# ------------------------------------------
# Return Values
# ------------------------------------------
return.list <- list(pred.performance=pred.performance,
test.dev=test.dev,
test.pearson=test.pearson)
return(return.list)
# --------------------------------------------------------------------------
} # end function
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# Generate Contours for Spatial Density of Given Locations
# -----------------------------------------------------------------------------
# Daniel Fink
# 2.7.08
#
# Description
# -----------------
# Objectives are to
# ** estimate 2D KDE over lat & Lon
# ** second: estimate the SD of prediction error
# ** exclude/white out lowest level of density surface
# ** estimate quantiles of density surface estimates
# ----------------------------------------------------------------------
#
#
# Input
# ----------
# xxx, yyy - locations
# contours - vector of numbers
# density.cutoff
#
# Output
# ----------
# ** draw contours
# ** return zzz quantile hieghts that define the contours.
# This will be a numeric vector with same length as contours
#
# Notes:
# ---------
#
# Further Development:
# ----------------------------
# ** return density estimate
# ** pass through to access options on density estimator
# -----------------------------------------------------------------------------
spatial.density.contours <- function(
xxx, yyy,
contours,
density.cutoff = 0.1,
xgridsize = 40,
ygridsize = 40,
# ----------------------------
file.name =NULL,
plot.it =FALSE,
plot.height=600,
plot.width=800){
# ------------------------------------------
# Dummy Values/Calls
# ------------------------------------------
# ------------------------------------------
# Inits
# ------------------------------------------
require(GenKern)
require(maps)
require(fields)
# -------------------------------------
# GenKern: Estimate 2D KDE over lat & Lon
# ----------------------------------
# calculate and plot a surface with zero correlation
# Notes that KernSur 2D KDE can change dramatically by
# changing the bandwidths and correlation.
# The selection of grid size determines spatial resoluation
# of the contours. Which we want regional.
# ------------------------------------------
op <- KernSur(xxx,yyy,
xgridsize=xgridsize,
ygridsize=ygridsize)
#correlation=0,
#xbandwidth=1,
#ybandwidth=1,
# Plot level plot of the Density estimate
#density.cutoff <- 0.1 # "Zero" Density cutoff
# cleans up map and calculations
#par(mfrow=c(1,2))
image.plot(op$xords, op$yords,
log(op$zden+1),
zlim = c(density.cutoff, 7),
col=terrain.colors(100),
#col=heat.colors(100),
axes=TRUE,
xlab="Longitude",
ylab="Latitude",
main=" eBird Spatial Log Density " )
# Compute quantiles of the Density estimate.
# Note however, that this includes all the zeros that are
# in the boundary area.
# ---------------------------------------------------------
# Quantiles for 2004 - 2007 Unique Locations (12008)
zzz.quant <- quantile( op$zden[op$zden > density.cutoff],
probs = contours) # Defines lower bound for data quality
# Quantiles for 2004 - 2007 Unique Locations (12008)
#zzz.quant <- quantile( op$zden[op$zden > density.cutoff],
# probs =c(0.983, 0.88, 0.65))
# Quantiles for 2006 Unique Locations (~6000) #c(0.85, 0.605))
# Plot Contours at these levels
# ------------------------------
#contour(op$xords, op$yords, op$zden, add=TRUE,
# levels=zzz.quant,
# col=c(1:length(contours))+1,
# lwd=2.0)
box()
# Add political Boundaries
map('state',add=TRUE, lwd=2, col="yellow")
map('state',add=TRUE, lwd=1, col="black")
#points(xxx,yyy, cex=0.25)
# Calculate All Contour Polygons using contourLines
# contour.poly is a list where each element describes
# one ploygon. Elements are
# $level (this is one of the z.quantiles)
# $x
# $y (vectors defining boundary of polygon)
# -------------------------------------------------
contour.polygons <- contourLines(op$xords, op$yords, op$zden,
levels=zzz.quant)
# Return contours as polygons too!!!
results.list <- list(
contours = contours,
xxx = xxx,
yyy = yyy,
log.density.quantiles = zzz.quant,
contour.polygons = contour.polygons,
density.KernSur.obj = op)
return(results.list)
}#---------------------------------------------------------------------
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
# --------------------------------------------------------------------------
# Plot Halloween Maps
# -----------------------------
#
#
# -------------------------------------
# There may be a problem with the halloween.maps()
# code when there are NO missing values and
# this parameter is used: NA.col="grey20")
# -------------------------------------
#
#
# jdate.seq
# year.seq
# save.name
# spp.name <- "Yellow Warbler"
# z.min <-
# z.max <-
# If you use the mapping function for a single map, and
# turn the add=TRUE parameter, then you can add
# more stuff to the plot. You will need to end it with a call to
# dev.off()
#
# # ----------------------------------------------------------------------
# # Calculate Indices for Point.in.polygon for Contours
# # ----------------------------------------------------------------------
# # Do not filter locations
# # ------------------------
# contour.index <- rep(TRUE, length(st.pred$xxx))
# # Filter locations using archived polygon
# # --------------------------------
# sdc.name <- paste(control.dir,
# "yelwar.East.travel.spatial.density.contours.RData",sep="")
# load( file=sdc.name) # sd.cont
# pip.cont <- point.in.polygon.contours( st.pred$xxx, st.pred$yyy,
# sd.cont$contour.polygons)
# #contour.index <- pip.cont$contour.index[,1]
# #
##
#
# #~ # Eg.1. extract individual States
# #~ #--------------------------------------------------------------
# #~ sites <- data.frame(lon=st.pred$xxx, lat=st.pred$yyy)
# #~ shape.dir <-"/mnt/data2/ST.BDT/BDT.shapefiles/"
# #~ shape.filename <- "STATES.shp"
# #~ selected.shape.names <- c("New York", "Georgia")
# #~ att.selection.column.name <- "STATE_NAME"
# #~ # --------------------------------------------------------------
# #~ # Eg.2 extract individual BCRs
# #~ #--------------------------------------------------------------
# #~ sites <- data.frame(lon=st.pred$xxx, lat=st.pred$yyy)
# #~ shape.dir <-"/mnt/data2/ST.BDT/BDT.shapefiles/"
# #~ shape.filename <- "bcr.shp" # watch capitalization!
# #~ att.selection.column.name <- "BCR"
## #~ # -------------------------------------------------------------- #~ selected.shape.names <- c(13, 27) # class must match att.selection.column
##
#
# --------------------------------------------------------------------------
# DMF 3.19.10 modified from halloween.maps in stem.library.ST.R
# dated 3.16.10
#
# I am going to add formal parameters so that
# we can can specify separate input directories for st.matrix files
# and separate directories for map sequence outputs
# --------------------------------------------------------------------------
st.matrix.maps <- function(
st.matrix.directory,
map.directory,
# --------------
#save.dir,
#save.name,
## KFW resp.transformation.code = NULL,
# ---------------
jdate.seq,
year.seq,
begin.seq,
end.seq=length(jdate.seq),
# ------------------
# output
pred.grid.size=NULL,
map.plot.width = 1000,
spatial.extent.list = NULL,
z.max = NULL,
z.min = NULL,
map.tag = NULL,
google.maps=FALSE,
add=FALSE,
NA.col=NULL,
halloween.colors=NULL,
title.text = NULL,
date.bar = TRUE,
# -------------------------------------------
# map args
# -------------------------------------------
county.map = FALSE,
state.map=TRUE,
world.map=FALSE,
state.map.lwd = NULL,
state.map.col = NULL,
county.map.lwd = NULL,
county.map.col = NULL,
world.map.lwd = NULL,
world.map.col = NULL,
# -------------------------
print.date=FALSE,
# -------------------------
...) {
# ------------------------------------------------
if (is.null(state.map.lwd)) state.map.lwd <- 1.5
if (is.null(state.map.col)) state.map.col <- "grey"
if (is.null(county.map.lwd)) county.map.lwd <- 0.5
if (is.null(county.map.col)) county.map.col <- "grey"
if (is.null(world.map.lwd)) world.map.lwd <- 2.0
if (is.null(world.map.col)) world.map.col <- "white"
#---------------------------------------------
if ("/" != substring(map.directory, nchar(map.directory), nchar(map.directory))) {
map.directory <- paste(map.directory, "/", sep="")
}
if ("/" != substring(st.matrix.directory, nchar(st.matrix.directory), nchar(st.matrix.directory))) {
st.matrix.directory <- paste(st.matrix.directory, "/", sep="")
}
system(paste("mkdir ", map.directory,sep=""), intern=TRUE)
# Initialization Info Space-Time Predictions From file
# ----------------------------------------------
stp.name <- paste(st.matrix.directory,"st.matrix..1.RData",sep="")
load(stp.name)
# ----------------------------------------------------------------------
# Limit Spatial Extent by Point in Polygon or ShapeFile
# ----------------------------------------------------------------------
contour.index <- rep(TRUE, length(st.pred$xxx))
if (!is.null(spatial.extent.list)){
if (spatial.extent.list$type == "rectangle"){
ttt.index <- ( st.pred$yyy > spatial.extent.list$lat.min &
st.pred$yyy < spatial.extent.list$lat.max &
st.pred$xxx > spatial.extent.list$lon.min &
st.pred$xxx < spatial.extent.list$lon.max )
contour.index <- (ttt.index & contour.index)
}
if (spatial.extent.list$type == "polygon"){
ttt.index <- point.in.polygon(
xxx = st.pred$xxx,
yyy = st.pred$yyy,
polygon.vertices =
spatial.extent.list$polygon.vertices)
contour.index <- (ttt.index & contour.index)
}
if (spatial.extent.list$type == "shapefile"){
ttt.index <- point.in.shapefile(
sites = data.frame(lon=st.pred$xxx, lat=st.pred$yyy),
shape.dir=spatial.extent.list$shape.dir,
shape.filename=spatial.extent.list$shape.filename,
att.selection.column.name=
spatial.extent.list$att.selection.column.name,
selected.shape.names=
spatial.extent.list$selected.shape.names)
contour.index <- (ttt.index & contour.index)
}
} # if (!is.null(spatial.extent.list)){
# -------------------------------------------------------------------
# initizalize.map.grid() formats maps automatically
# -------------------------------------------------------------------
mapping.spatial.extent <- list(
lat.max = max( st.pred$yyy[contour.index]),
lat.min = min( st.pred$yyy[contour.index]),
lon.min = min( st.pred$xxx[contour.index]),
lon.max = max( st.pred$xxx[contour.index]) )
map.inits <- initizalize.map.grid(
spatial.extent = mapping.spatial.extent,
map.plot.width = map.plot.width,
pred.grid.size = pred.grid.size)
# ----------------------------------------------------------------------
# Compute Surface Summaries
# ----------------------------------------------------------------------
st.summary <- matrix(0,(end.seq-begin.seq+1), 7)
for (iii in begin.seq:end.seq){
stp.name <- paste(st.matrix.directory,"st.matrix..",iii,".RData",sep="")
load(stp.name)
# ---------------------------------------------------------------------------
# Un-tranform Responses
# ---------------------------------------------------------------------------
## KFW if ( resp.transformation.code == "sqrt") {
## KFW st.pred$pred <- (st.pred$pred) ^2
## KFW }
# ---------------------------------------------------------------------------
st.summary[(iii-begin.seq +1),] <- quantile(st.pred$pred[contour.index],
probs=c(0, .1,.25,.5,.75,.9,1),
na.rm = TRUE)
}
# Set minium as min of 10th quantiles
if (is.null(z.min)) z.min <- min(st.summary[,2])
# Take max as max of 90th quantiles
if (is.null(z.max)) z.max <- max(st.summary[,6])
# ---------------------------------------------------------
# Convert Temporal Sequence times to POSIX
# ---------------------------------------------------------
p.time <- strptime( x=paste(round(jdate.seq),year.seq), "%j %Y")
# Nice function to convert DateTime Classes
month.text <- months(p.time, abbreviate = FALSE)
date.names <- paste(month.text, " ",p.time$mday,",", year.seq,sep="")
# --------------------------------------------------------------
# Lookup Common Name in eBird Taxonomy File
# --------------------------------------------------------------
# datafile <- paste(control.dir,"eBird taxonomy file.csv",sep="")
# eBird.taxonomy <- read.csv(file=datafile)
# #names(eBird.taxonomy)
# spp.name <- eBird.taxonomy$PRIMARY_COM_NAME[
# as.character(eBird.taxonomy$SPECIES_CODE) == spp.code ]
# --------------------------------------------------------------
# Will's Halloween Pallete
# --------------------------------------------------------------
if (is.null(halloween.colors)){
n.red <- 100
red.colors <- colorRampPalette(
#-----------------------------------------------------------------------------------------
# Traditional Halloweeen Map (black under 0.20)
# -----------------------------------------------------------------------------------------
# c("black","black","#FF7100","white"),
# bias=1.9)
# -----------------------------------------------------------------------------------------
# Low Probability Halloween
# -----------------------------------------------------------------------------------------
# c("black","grey","#FF7100","yellow","white"),
# bias=1.0)
# -----------------------------------------------------------------------------------------
# Low Probability Halloween 2
# -----------------------------------------------------------------------------------------
c("black","grey20","#FF7100","white"),
bias=2.0)
# -----------------------------------------------------------------------------------------
# Green Halloween
# -----------------------------------------------------------------------------------------
#c("black","black","DarkGreen","Green4","Green"),
#space = "rgb",
}
else {
n.red <- 100
red.colors <- halloween.colors
}
# --------------------------------------------------------------
# Loop over Dates
# --------------------------------------------------------------
for (iii in begin.seq:end.seq){
#---------------------------------------------
# Load Space-Time Predictions From file
# ----------------------------------------------
#stp.name <- paste(save.dir,save.name,".",iii,".RData",sep="")
stp.name <- paste(st.matrix.directory,"st.matrix..",iii,".RData",sep="")
load(stp.name)
# ---------------------------------------------------------------------------
# Un-tranform Responses
# ---------------------------------------------------------------------------
## KFW if ( resp.transformation.code== "sqrt")
## KFW st.pred$pred <- (st.pred$pred) ^2
# ---------------------------------------------------------------------------
#----------------------------
# Surface Height Limits
# ----------------------------
st.pred$pred[st.pred$pred < z.min] <- z.min
st.pred$pred[st.pred$pred > z.max] <- z.max
# --------------
# --------------
num.txt <- formatC(iii,format="fg", width=5)
num.txt <- chartr(" ","0",num.txt)
map.file.name <- paste(map.directory,map.tag,
num.txt,".",jdate.seq[iii],
".",year.seq[iii],".png" ,sep="")
# --------------------------------------------------------------
# "Google".maps == Transparent PNG's
# --------------------------------------------------------------
# if TRUE then background = Transparent
# PNG margins are ajusted.
# spatial.extent needs to be communicated to
# Google.Earth so that it knows how to overlay image
# --------------------------------------------------------------
if (!google.maps) {
png(file=map.file.name, bg="white",
width=map.plot.width,
height=map.inits$map.plot.height)
par(mar = c(2,4,4,2), bg="black",fg="grey")
}
if (google.maps) {
png(file=map.file.name, bg="transparent",
width=map.plot.width,
height=map.inits$map.plot.height)
par(mar=c(0,0,0,0),bg="black",fg="grey",
xpd=TRUE)
}
# --------------------------------------------------------------
# Include Date Bar
# --------------------------------------------------------------
if (date.bar) {
par(plt = c(0.10, 0.883, 0.25, 0.85) )
# --------------------------------------------------------
# Do not add NA's filled in with given color
# --------------------------------------------------------
if ( is.null(NA.col) ) {
bs.rpart.maps(
xxx = st.pred$xxx[contour.index],
yyy = st.pred$yyy[contour.index],
zzz = st.pred$pred[contour.index],
zlim = c(z.min,z.max),
pred.grid.size = map.inits$pred.grid.size ,
grid.size.ratio = map.inits$grid.size.ratio,
axis.args=list(fg="grey", col.axis="grey"),
# Less than 1 reduces height,
# greater than 1 increase height
#for given width
col.palette = red.colors(n.red),
axes = FALSE,
...)
}
# --------------------------------------------------------
# Add image plot with NA's filled in with given color
# --------------------------------------------------------
if ( !is.null(NA.col) ) {
ttt.st.pred <- rep(NA,length(st.pred$pred))
ttt.st.pred[is.na(st.pred$pred)] <- 1
ttt.image <- as.image(
ttt.st.pred[contour.index],
x= data.frame( st.pred$xxx[contour.index],
st.pred$yyy[contour.index]),
nrow=round(map.inits$pred.grid.size*
map.inits$grid.size.ratio), # nrow=X direction
ncol=map.inits$pred.grid.size, # ncol=Y direction
na.rm=TRUE)
image(ttt.image,
col=NA.col,
# add=TRUE,
axes = FALSE,...)
if (!is.null(title.text)) {
title(main=paste(title.text), col="white",line=0)
}
bs.rpart.maps(
xxx = st.pred$xxx[contour.index],
yyy = st.pred$yyy[contour.index],
zzz = st.pred$pred[contour.index],
zlim = c(z.min,z.max),
pred.grid.size = map.inits$pred.grid.size ,
grid.size.ratio = map.inits$grid.size.ratio,
axis.args=list(fg="grey", col.axis="grey"),
# Less than 1 reduces height,
# greater than 1 increase height
#for given width
col.palette = red.colors(n.red),
axes = FALSE,
add=TRUE,
...)
} # !is.null(NA.col)
# -------------------------------------------------------------
# Add Date Text
# -------------------------------------------------------------
if (print.date) {
#mtext( paste(date.names[iii]), side=3, col="white")
text( x= min(st.pred$xxx[contour.index]),
y= min(st.pred$yyy[contour.index]),
pos=4, #plot to the right
labels= date.names[iii])
}
# -------------------------------------------------------------
# Add Political Boundaries
# -------------------------------------------------------------
if (county.map) map('county',add=TRUE, lwd=county.map.lwd, col=county.map.col)
if (state.map) map('state',add=TRUE, lwd=state.map.lwd, col=state.map.col)
if (world.map) map('world',add=TRUE, lwd=world.map.lwd, col=world.map.col)
# -------------------------------------------------------------
# Bottom Date Legend Rectangle
# -------------------------------------------------------------
# Find the coordinate for the right boundary of
# image.plot's "bigplot"
right.corner <- image.plot.plt()$bigplot[2]
par(plt = c(0.10, right.corner, 0.15, 0.22) )
# Set user coordinates for this region
par(usr=c(-1,366,0,1))
box(lwd=2, col="grey")
rect(xleft= (jdate.seq[iii]-2), ybottom=0, xright=(jdate.seq[iii]+2), ytop=2,
col=red.colors(n.red)[n.red],
border=NA )
axis(1, at = c(5, 90, 180, 270, 360),
labels = c("Jan", "Apr", "Jun", "Sep", "Dec"),
cex=1.5,
col="grey",
col.axis="grey",
font=1)
# -------------------------------------------------------------
} # end date.bar == TRUE
# -------------------------------------------------------------
# --------------------------------------------------------------
# Exclude Date Bar
# --------------------------------------------------------------
if (!date.bar) {
# --------------------------------------------------------
# Do not add NA's filled in with given color
# --------------------------------------------------------
if ( is.null(NA.col) ) {
bs.rpart.maps(
xxx = st.pred$xxx[contour.index],
yyy = st.pred$yyy[contour.index],
zzz = st.pred$pred[contour.index],
zlim = c(z.min,z.max),
pred.grid.size = map.inits$pred.grid.size ,
grid.size.ratio = map.inits$grid.size.ratio,
axis.args=list(fg="grey", col.axis="grey"),
# Less than 1 reduces height,
# greater than 1 increase height
#for given width
col.palette = red.colors(n.red),
axes = FALSE,
...)
}
# --------------------------------------------------------
# Add image plot with NA's filled in with given color
# --------------------------------------------------------
if ( !is.null(NA.col) ) {
ttt.st.pred <- rep(NA,length(st.pred$pred))
ttt.st.pred[is.na(st.pred$pred)] <- 1
ttt.image <- as.image(
ttt.st.pred[contour.index],
x= data.frame( st.pred$xxx[contour.index],
st.pred$yyy[contour.index]),
nrow=round(map.inits$pred.grid.size*
map.inits$grid.size.ratio), # nrow=X direction
ncol=map.inits$pred.grid.size, # ncol=Y direction
na.rm=TRUE)
image(ttt.image,
col=NA.col,
# add=TRUE,
axes = FALSE,...)
if (!is.null(title.text)) {
title(main=paste(title.text), col="white",line=0)
}
bs.rpart.maps(
xxx = st.pred$xxx[contour.index],
yyy = st.pred$yyy[contour.index],
zzz = st.pred$pred[contour.index],
zlim = c(z.min,z.max),
pred.grid.size = map.inits$pred.grid.size ,
grid.size.ratio = map.inits$grid.size.ratio,
axis.args=list(fg="grey", col.axis="grey"),
# Less than 1 reduces height,
# greater than 1 increase height
#for given width
col.palette = red.colors(n.red),
axes = FALSE,
add=TRUE,
...)
} # !is.null(NA.col)
# -------------------------------------------------------------
# Add Date Text
# -------------------------------------------------------------
if (print.date) {
#mtext( paste(date.names[iii]), side=3, col="white")
text( x= min(st.pred$xxx[contour.index]),
y= min(st.pred$yyy[contour.index]),
pos=4, #plot to the right
labels= date.names[iii])
}
# -------------------------------------------------------------
# Add Political Boundaries
# -------------------------------------------------------------
if (county.map) map('county',add=TRUE, lwd=county.map.lwd, col=county.map.col)
if (state.map) map('state',add=TRUE, lwd=state.map.lwd, col=state.map.col)
if (world.map) map('world',add=TRUE, lwd=world.map.lwd, col=world.map.col)
# -------------------------------------------------------------
} # end plotting w/o date bar
# -------------------------------------------------------------
if (add==FALSE) dev.off()
# ---------------------------------------------------------------------------
} # iii - loop over dates
# -----------------------------------------------------------------------------------
}# end function
#------------------------------------------------------------------------------------
#------------------------------------------------------------------------------------
#------------------------------------------------------------------------------------
#------------------------------------------------------------------------------------
# --------------------------------------------------------------------------
# Plot Base Surface Maps
# -----------------------------
#
#
# Results:
#
#
# jdate.seq
# year.seq
# save.name
# spp.name <- "Yellow Warbler"
# z.min <-
# z.max <-
#----------------------------
# google.maps
# ---------------------
# if TRUE then background = Transparent
# PNG margins are ajusted.
# spatial.extent needs to be communicated to
# Google.Earth so that it knows how to overlay image
# ----------------------------
# --------------------------------------------------------------------------
surface.maps <- function(
save.dir,
save.name,
jdate.seq,
year.seq,
begin.seq,
end.seq=length(jdate.seq),
## KFW resp.transformation.code = NULL,
# output
pred.grid.size=NULL,
z.max = NULL,
z.min = NULL,
map.tag,
google.maps=FALSE,
add=FALSE)
{
# ------------------------------------------
# call to the function initizalize.map.grid() in
# st.clustering.functions.2.R format maps automatically
# ---------------------------------------------------------------------------------------------------
map.inits <- initizalize.map.grid(spatial.extent=spatial.extent,
map.plot.width=map.plot.width,
pred.grid.size= pred.grid.size)
# Reset this for slightly larger grid cells
# Response Transformation code
#resp.transformation.code <- "sqrt"
# Map surface filename tag
#map.tag <- paste(exp.name,"st.map.",sep="")
#---------------------------------------------
# Initialization Info Space-Time Predictions From file
# ----------------------------------------------
stp.name <- paste(save.dir,
save.name,".",1,".RData",sep="")
load(stp.name)
# ----------------------------------------------------------------------
# Calculate Indices for Point.in.polygon for Contours
# ----------------------------------------------------------------------
# Do not filter locations
# ------------------------
contour.index <- rep(TRUE, length(st.pred$xxx))
# Filter locations using archived polygon
# --------------------------------
sdc.name <- paste(control.dir,
"yelwar.East.travel.spatial.density.contours.RData",sep="")
load( file=sdc.name) # sd.cont
pip.cont <- point.in.polygon.contours( st.pred$xxx, st.pred$yyy,
sd.cont$contour.polygons)
#contour.index <- pip.cont$contour.index[,1]
# ----------------------------------------------------------------------
# Compute Surface Summaries
# ----------------------------------------------------------------------
st.summary <- matrix(0,(end.seq-begin.seq+1), 7)
for (iii in begin.seq:end.seq){
stp.name <- paste(save.dir,
save.name,".",iii,".RData",sep="")
load(stp.name)
# ---------------------------------------------------------------------------
# Un-tranform Responses
# ---------------------------------------------------------------------------
## KFW if ( resp.transformation.code== "sqrt")
## KFW st.pred$pred <- (st.pred$pred) ^2
# ---------------------------------------------------------------------------
st.summary[iii,] <- quantile(st.pred$pred[contour.index],
probs=c(0, .1,.25,.5,.75,.9,1))
}
# Set minium as min of 10th quantiles
if (is.null(z.min)) z.min <- min(st.summary[,2])
# Take max as max of 90th quantiles
if (is.null(z.max)) z.max <- max(st.summary[,6])
# Compute Slice Quantiles
#pred.ecdf <- ecdf(st.pred$pred)+
#qqq <- pred.ecdf(st.pred$pred)
# ---------------------------------------------------------
# Convert Temporal Sequence times to POSIX
# ---------------------------------------------------------
p.time <- strptime( x=paste(round(jdate.seq),year.seq), "%j %Y")
# Nice function to convert DateTime Classes
month.text <- months(p.time, abbreviate = FALSE)
date.names <- paste(month.text, " ",p.time$mday,",", year.seq,sep="")
# --------------------------------------------------------------
# Lookup Common Name in eBird Taxonomy File
# --------------------------------------------------------------
datafile <- paste(control.dir,"eBird taxonomy file.csv",sep="")
eBird.taxonomy <- read.csv(file=datafile)
#names(eBird.taxonomy)
spp.name <- eBird.taxonomy$PRIMARY_COM_NAME[
as.character(eBird.taxonomy$SPECIES_CODE) == spp.code ]
# ------------------------------------
# My "Red" Pallete
# ------------------------------------
n.red <- 100
red.colors <- colorRampPalette(
c("white","red","#7F0000"),
space = "rgb",
bias=0.5)
# ---------------------------------------
for (iii in begin.seq:end.seq){
#---------------------------------------------
# Load Space-Time Predictions From file
# ----------------------------------------------
stp.name <- paste(save.dir,
save.name,".",iii,".RData",sep="")
load(stp.name)
# ---------------------------------------------------------------------------
# Un-tranform Responses
# ---------------------------------------------------------------------------
## KFW if ( resp.transformation.code== "sqrt")
## KFW st.pred$pred <- (st.pred$pred) ^2
# ---------------------------------------------------------------------------
#----------------------------
# Surface Height Limits
# ----------------------------
st.pred$pred[st.pred$pred < z.min] <- z.min
st.pred$pred[st.pred$pred > z.max] <- z.max
# --------------
# --------------
num.txt <- formatC(iii,format="fg", width=5)
num.txt <- chartr(" ","0",num.txt)
map.file.name <- paste(save.dir,map.tag,
num.txt,".",jdate.seq[iii],
".",year.seq[iii],".png" ,sep="")
#----------------------------
# google.maps
# ---------------------
# if TRUE then background = Transparent
# PNG margins are ajusted.
# spatial.extent needs to be communicated to
# Google.Earth so that it knows how to overlay image
# ----------------------------
if (!google.maps) {
png(file=map.file.name, bg="white",
width=map.plot.width,
height=map.inits$map.plot.height)
par(mfrow=c(1,1), cex=2.0, mar=c(5,4,4,5))
}
if (google.maps) {
png(file=map.file.name, bg="transparent",
width=map.plot.width,
height=map.inits$map.plot.height)
par(mfrow=c(1,1),
cex=2.0,
mar=c(0,0,0,0),
xpd=TRUE)
}
# ---------------
# Plot Surface
# ---------------
contour.index <- pip.cont$contour.index[,1]
bs.rpart.maps(
xxx = st.pred$xxx[contour.index],
yyy = st.pred$yyy[contour.index],
zzz = st.pred$pred[contour.index],
zlim = c(z.min,z.max),
pred.grid.size = map.inits$pred.grid.size ,
grid.size.ratio = map.inits$grid.size.ratio,
# Less than 1 reduces height,
# greater than 1 increase height
#for given width
col.palette = red.colors(n.red),
#spatial.extent = spatial.extent.map ,
xlab= "Longitude",
ylab= "Latitude")
title(main = paste(spp.name, " ", date.names[iii]) ,
font.main=4, line=1, cex.main=3.0 )
# -------------------------------------------------------------
# Add Polygon Boundaries
# -------------------------------------------------------------
kk <- 1 # first (lower) quantile
hd.index <- pip.cont$contour.level.index ==
sd.cont$log.density.quantiles[kk]
hd.set <- (1:length(pip.cont$contour.level.index))[hd.index]
# There are 9 polygons in this set, but only the first and fourth
# are the big important regions
for (kkk in c(1,4)){
polygon(sd.cont$contour.polygons[[kkk]]) #$x,
#sd.cont$contour.polygons[[jjj]]$y,
# col= "black", #c.col[kk],
#border=TRUE)
}
# -------------------------------------------------------------
# Add Political Boundaries
# -------------------------------------------------------------
require(maps)
map('county',add=TRUE, lwd=2, col="grey")
map('state',add=TRUE, lwd=3, col="yellow")
map('state',add=TRUE, lwd=2, col="black")
# -----------------------------------------------------
# -------------------------------------------------------------
if (add==FALSE) dev.off()
} # iii - st.pred index
}# end fuction
#------------------------------------------------------------------------------------
#------------------------------------------------------------------------------------
#------------------------------------------------------------------------------------
#------------------------------------------------------------------------------------
# ------------------------------------------------------------------------------------------------------
# ------------------------------------------------------------------------------------------------------
# Initialize Map Gridding
# ------------------------------------------------------------
# 10.7.08
#
# This needs to be cleaned up a bit
#
# Input:
# -------------
#
# Output:
# ----------
#
# Examples:
# ------------------
# --------------------------------------------------
#~ spatial.extent <- list( lat.max = 45.0,
#~ lat.min = 39.0,
#~ lon.min= -82.5,
#~ lon.max = -67.0 )
#~ # ----------------------------------------
#~ if (spatial.extent.code == "US") {
#~ spatial.extent <- spatial.extent.US
#~ map.plot.width <- 1800
#~ #pred.grid.size <- 100 #height == lat
#~ }
# ------------------------------------------------------------------------------------------------------
# ------------------------------------------------------------------------------------------------------
initizalize.map.grid <- function(
spatial.extent=NULL,
lat=NULL,
lon=NULL,
map.plot.width,
pred.grid.size=NULL ){
# Needs either spatial.extent or lat & lon
# -----------------------------------------------------------------------------
# ST Surface Plots Inits
# -----------------------------------------------------------------------------
#~ Latitude and longitude can be used very simply for plotting
#~ by setting up a rectangular grid (e.g. like a Simple Cylindrical Projection)
#~ The question is how to scale the length:width of the rectangles.
#~ At the equator a degree of latitude is roughly the same length
#~ in miles as a degree of longitude - ignoring the asphericity of the
#~ Earth's globe. Thus, at the equator, a square grid would be satisfactory
#~ for a small map.
#
#~ As we move further away from the equator, e.g. where the continental US lies,
#~ a degree of longitude is shorter in miles, though a degree of latitude
#~ is much the same. Thus, a square lat-lon grid in the continental US distorts
# distances, the map being stretched E-W. Using a rectangular lat-lon grid
# gives a truer picture of everyday miles.
#
#~ The ratio of lengths for a degree latitude:longitude approximately corresponds
#~ to the inverse of the cosine of the latitude. For example, at 40 degrees
#~ latitude, the ratio of lat:lon is appriximately 1/cos(40 degrees) = 1.31.
#~ This is the ratio for latitude of Denver,CO Springfield, IL, or Harrisburg, PA.
#
#~ This ratio of latitude:longitude is used to determine an appropriate
#~ ratio of map image size (length & width in pixes) as well to determine
# grid size ratio so that
#~ grid cells plotted in the map surface have approximately equal length width & height in miles.
#~ For simplicity, I use a fixed grid size for mapping. The ratio of
#~ the length latitude:longitude length of the pixels is adjusted to
#~ the inverse of the cosine of the latitude from the middle of the spatial
#~ extent being plotted.
# -----------------------------------------------------------------------------------------------------
# user specified: Width of image (png file) in pixels
#map.plot.width <- 1500
middle.lat <- mean(spatial.extent$lat.max,spatial.extent$lat.min)
pixels.per.degree.lon <- map.plot.width/
(spatial.extent$lon.max - spatial.extent$lon.min)
length.lat.to.length.lon.ratio <- 1/cos(middle.lat/360*2*pi)
pixels.per.degree.lat <- length.lat.to.length.lon.ratio *
pixels.per.degree.lon
map.plot.height <- round(pixels.per.degree.lat *
(spatial.extent$lat.max-spatial.extent$lat.min))
# ------------------------------------------------------------------------
# Discretization size
# ------------------------------------------------------------------------
# Calculate the maximum number of grid cells (minimum grid cell area)
# to achieve the 10 random locations per cell from the prediction
# grid design.
#
# NOTE: It appears that with these setting there are FAR more than
# 10 random locs per cell!!!!
#
# The minimum Longitude grid side = . .14436 deg long
# At 40 degrees Lat, a change of .14436 lon is 12km in length.
# This number comes from the stratified design used to sample the
# random locations based on extent and 400 equally spaced lon cells:
# .14436 deg long = (-124.72839 - -66.98426)/400
#
# The minimum Latitude grid side = ..12210 deg lat
# At 40 degrees Lat, a change of .12210 lat is 14 km in length.
# This number comes from the stratified design used to sample the
# random locations based on extent and 200 equally spaced lat cells:
# .12210 deg lat= (48.97630 - 24.55572)/200
#------------------------------------------------------------------------
if (is.null(pred.grid.size)) {
# Calculate Maximum pred.grid.size for this region
pred.grid.size.max.xxx <-
floor( (spatial.extent$lon.max - spatial.extent$lon.min)/.145)
pred.grid.size.max.yyy <-
floor( (spatial.extent$lat.max - spatial.extent$lat.min)/.123 )
if (pred.grid.size.max.xxx < pred.grid.size.max.yyy)
pred.grid.size <- floor(pred.grid.size.max.xxx)
if (pred.grid.size.max.xxx > pred.grid.size.max.yyy)
pred.grid.size <- floor(pred.grid.size.max.yyy)
#pred.grid.size
}
# -------------------------------------------------------------------
# User specified: number of latitude cells across spatial.extent
#pred.grid.size <- 100
# --------------------------------------------------------------------------
# longitude cells = pred.grid.size * grid.size.ratio
# Note that this ratio really takes into account two
# quantities, the ratio of the lat:lon distances on the
# surface of the Earth as well as the lat:lon ratio of
# the spatial extent.
# -------------------------------------------------------------------------
cells.per.degree.lat <- pred.grid.size/
(spatial.extent$lat.max - spatial.extent$lat.min)
cells.per.degree.lon <- cells.per.degree.lat /
length.lat.to.length.lon.ratio
grid.cell.plot.width <- cells.per.degree.lon *
(spatial.extent$lon.max-spatial.extent$lon.min)
grid.size.ratio <- grid.cell.plot.width/pred.grid.size
#grid.size.ratio
#pred.grid.size
#grid.cell.plot.width
# ---------------------------------------------------------------------------------
# How long are the sides of a grid cell?
# ----------------------------------------------------------------------------------
# Assume a grid cell centered at 40 degrees lat
# ----------------------------------------------------------------------------------
# Formula for distance between two points on a great circle
# Each point needs to be expressed in radians
# ---------------------------------------------------------------------------------------------
lat1<- (40)*pi/180
lon1 <- 70*pi/180
lat2 <- (40 + 1/cells.per.degree.lat)*pi/180
lon2 <- lon1
d <- 2*asin(sqrt((sin((lat1-lat2)/2))^2 +
cos(lat1)*cos(lat2)*(sin((lon1-lon2)/2))^2))
radius.km <- 6371.0
lat.distance.km <- radius.km * d
# ---------------------------------------------------------------------------------------------
lat1<- (40)*pi/180
lon1 <- 70*pi/180
lon2 <- (70 + 1/cells.per.degree.lon)*pi/180
lat2 <- lat1
d <- 2*asin(sqrt((sin((lat1-lat2)/2))^2 +
cos(lat1)*cos(lat2)*(sin((lon1-lon2)/2))^2))
radius.km <- 6371.0
lon.distance.km <- radius.km * d
# ----------------------------
return(list(
pixels.per.degree.lon=pixels.per.degree.lon,
pixels.per.degree.lat=pixels.per.degree.lat,
map.plot.height=map.plot.height,
length.lat.to.length.lon.ratio=length.lat.to.length.lon.ratio,
cells.per.degree.lat =cells.per.degree.lat ,
cells.per.degree.lon=cells.per.degree.lon,
grid.cell.plot.width=grid.cell.plot.width,
grid.size.ratio =grid.size.ratio,
pred.grid.size=pred.grid.size,
lon.distance.km=lon.distance.km,
lat.distance.km=lat.distance.km))
} # end function
# ------------------------------------------------------------------------------------------------------
# ------------------------------------------------------------------------------------------------------
# ------------------------------------------------------------------------------------------------------
# ------------------------------------------------------------------------------------------------------
# Point in Shapefile Polygon Operation
# ------------------------------------------------------------
# 6.3.08
# 10.6.08
#
# This function performs the "Point in shapefile" operation
# for BCRs and Statenames for a specific set of shapefiles.
# Because each shape file has its own attr data frame, there are two
# steps to select shapes:
# 1) find the att.selection.column of the att.data data.frame
# 2) search for selected.shape.names in the att.selection.column
#
# NOTE: This function is based on the NCEAS function XXXXXX
# except that I needed to fix the donut hole problem with
# the shape files. I need to finish documenting this and
# send it back to those guys!
#
# NOTE: 1.9.09
# ---------------
# I changed the way that I access attributes -
# I ran into problems not having S4 objects
#
# Input:
# -------------
# shape.dir
# shape.filename
# sites = data.frame with lat & lon vectors for spatial extent/universe
# att.selection.column.name = the name of the att.data column
# selected.shape.names = vector of region/shape names from shape file
#
# Output:
# ----------
# location.pip - T/F vector the length of the sites
#
# Examples:
# ------------------
#~ # --------------------------------------------------------------
#~ # Eg.1. extract individual States
#~ #--------------------------------------------------------------
#~ sites <- data.frame(lon=st.pred$xxx, lat=st.pred$yyy)
#~ shape.dir <-"/mnt/data2/ST.BDT/BDT.shapefiles/"
#~ shape.filename <- "STATES.shp"
#~ selected.shape.names <- c("New York", "Georgia")
#~ att.selection.column.name <- "STATE_NAME"
#~ # --------------------------------------------------------------
#~ # Eg.2 extract individual BCRs
#~ #--------------------------------------------------------------
#~ sites <- data.frame(lon=st.pred$xxx, lat=st.pred$yyy)
#~ shape.dir <-"/mnt/data2/ST.BDT/BDT.shapefiles/"
#~ shape.filename <- "bcr.shp" # watch capitalization!
#~ att.selection.column.name <- "BCR"
#~ selected.shape.names <- c(13, 27) # class must match att.selection.column
#~ # ------------------------------------------------------------
#~ location.pip <- point.in.shapefile(
#~ sites,
#~ shape.dir,
#~ shape.filename,
#~ att.selection.column.name,
#~ selected.shape.names)
#~ plot(sites)
#~ points(sites[location.pip,], col="red",cex=0.25)
# ------------------------------------------------------------------------------------------------------
# ------------------------------------------------------------------------------------------------------
point.in.shapefile <- function(
sites,
shape.dir,
shape.filename,
att.selection.column.name,
selected.shape.names
) {
# ------------------------------------------------------------------------------------------------------
require(maptools)
require(splancs)
#require(maps)
# --------------------------------------------------------------
# Read Shape File & Create Map object (using Maptools package)
#--------------------------------------------------------------
#shape.dir <-"c:\\users\\Research.AKN\\BDT\\Data\\point.in.polygon\\"
#shape.dir <- data.dir
#shape.filename <- "STATES.shp"
#shape.data <- read.shape(paste(shape.dir,shape.filename,sep=""))
# 2.24.10 Theo Damoulas
# The map tools library was "updated"
# !!!!!!! function read.shape deprecated use internal ::: to find
shape.data <- maptools:::read.shape(paste(shape.dir,shape.filename,sep=""))
#maptools:::getinfo.shape(paste(shape.dir,shape.filename,sep=""))
# --------------------------------------------------------------------------------
# Because each shape file has its own attr data frame,
# 1) find the att.selection.column.name of the att.data data.frame
# 2) search for selected.shape.names in the att.selection.column
# --------------------------------------------------------------------------------
att.col.index <-( names(shape.data$att.data) %in%
att.selection.column.name )
#selected.regions <- subset(Map2poly(shape.data),
# shape.data$att.data[, att.col.index] %in% selected.shape.names )
selected.regions <- subset(maptools:::Map2poly(shape.data),
shape.data$att.data[, att.col.index] %in% selected.shape.names )
# ----------------------------------------------
# PIP function
# ----------------------------------------------
selected.sites <- NULL
nnn.regions <- length(selected.regions[])
point.in.poly.ind <- NULL
for (iii in 1:nnn.regions){
# --------------------------------------------------
temp.region <- selected.regions[[iii]]
# cycle through individual parts within each polygon region
# performing the PinP operation one part at a time
# instead of one region at a time
# ------------------------------------------------
attr.temp <- attributes(temp.region)
#nParts <- temp.region@nParts
nParts <- attr.temp$nParts
for (jjj in 1:nParts) {
#begin.ttt <- temp.region@pstart$from[jjj]
#end.ttt <- temp.region@pstart$to[jjj]
begin.ttt <- attr.temp$pstart$from[jjj]
end.ttt <- attr.temp$pstart$to[jjj]
ttt <- temp.region[begin.ttt:end.ttt,]
res <- try(inpip(sites[c("lon","lat")], ttt))
# If no errors, collect indices of sites that
# are within the set of polygons.
if (class(res)=="integer")
point.in.poly.ind <- c(point.in.poly.ind,res)
} # end for jjj
} #end for iii
# --------------------------------------------------------
# Collect all point in Polygon set
# --------------------------------------------------------
location.pip <- rep(FALSE, NROW(sites))
location.pip[point.in.poly.ind] <- TRUE
return(location.pip)
} # end function
# ----------------------------------------------------------------------
# ----------------------------------------------------------------------
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# Point-in-Polygon Function
# -----------------------------------------------------------------------------
# Daniel Fink
# 10.08.08
# 03.17.10
#
# Description
# -----------------
# For a given set of locations determine if they fall into
# a sinlge Polygon. Return one index (length of locations).
#
# Input
# ----------
# xxx, yyy - locations
# polygon.vertices - data.frame with named vertices x and y
# corresponding to xxx and yyy coordinates, resp.
#
# Output
# ----------
# index vector the length of locations
#
# Notes:
# ---------
#
# Examples:
# ----------
#nnn <- 1000
#xxx <- rnorm(nnn, mean=0, sd=1)
#yyy <- rnorm(nnn, mean=0, sd=1)
#unit.sq.polygon <- data.frame( x=c(0,0,1,1),y=c(0,1,1,0))
#pip.index <- point.in.polygon(
# xxx = xxx,
# yyy = yyy,
# polygon.vertices = unit.sq.polygon)
#plot(xxx, yyy, type="n")
#polygon(unit.sq.polygon, col="blue")
#points(xxx,yyy)
#points(xxx[pip.index], yyy[pip.index], pch=19, col="yellow")
#
# -----------------------------------------------------------------------------
point.in.polygon <- function(
xxx, yyy,
polygon.vertices){
# ------------------------------------------
require(splancs)
ttt.index <- inpip(cbind(xxx,yyy),
cbind(polygon.vertices$x,
polygon.vertices$y))
data.index <- rep(FALSE, length(xxx))
data.index[ttt.index] <- TRUE
return(data.index)
}#---------------------------------------------------------------------
#-----------------------------------------------------------------------
# Drew, Kevin, and the Point in Polygon requires a lot
# DF: is very general - allows very flexible spatial partions
# Drew: is computationally intensive
# Kevin: is easily replaced
#
# I have changed the name because point.in.polygon is
# used LEGITIMATELY used in many other routines.
# This new function expedites the logic that selects
# stixels (ST ensemble extents/subsets)
# predict.ST.ensemble
# sample.ST.ensemble
# and create.ST.ensemble
#
#
# ------------------------------------------
# ------------------------------------------
## For North America
##
## min(x), max(y)
## -----------------------
## | |
## | |
## | |
## | |
## | |
## | |
## -----------------------
## max(x), min(y)
##
## This means that even if the base model extents
## were indeed non-rectangular polgons, then
## this logic will simply cover each polygon with
## the smallest covering retangle.
## This is an interesting idea.
##
##
## Here is another way to do it:
# The order of the vertices written by create.ST.ensemble is:
# 1) Lower Left corner
# 2) Upper Left
# 3) Upper Right
# 4) Lower Right
# ttt.index <- rep(FALSE, length(xxx))
# ttt.index <- xxx >= polygon.vertices$x[1] &
# xxx <= polygon.vertices$x[4] &
# yyy >= polygon.vertices$y[1] &
# xxx <= polygon.vertices$y[2]
#
#-----------------------------------------------------------------------
# -----------------------------------------------------------------------------
point.in.rectangle <- function(
xxx, yyy,
polygon.vertices){
# ------------------------------------------
maxX <- max(polygon.vertices$x)
minX <- min(polygon.vertices$x)
maxY <- max(polygon.vertices$y)
minY <- min(polygon.vertices$y)
newDataIndex <- rep(FALSE, length(xxx))
locationMask <- xxx <= maxX & xxx >= minX & yyy <= maxY & yyy >= minY
newDataIndex[locationMask] <- TRUE
#### if (isTRUE(all.equal(data.index,newDataIndex)) == FALSE) {
#### print("~~~~~ point.in.polygon FALSE")
#### }
return(newDataIndex)
}#---------------------------------------------------------------------
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# BS.RPART Mapping Plot Function
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# 1.2.08
#
# Description:
# ----------------
# This function produces a single map image using fields.
# No smoothing.
# Primitive (i.e. rectangular) control of spatial extent
#
# INPUT
# ------------
# xxx
# yyy
# zzz
#
# OUTPUT
# ------------
#
# To do:
# ---------
#
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
bs.rpart.maps <- function(
# Data
xxx,
yyy,
zzz,
pred.grid.size = NULL,
grid.size.ratio = 2,
spatial.extent = NULL,
# Save File
save.name = NULL,
plot.width = 800,
plot.height = 600,
main.text = NULL,
# Pass in other plotting parameters
col.palette=NULL,
... )
{ #begin function
# ------------------------------------------------------
# Inits
# ------------------------------------------------------
call <- match.call()
require(maps)
require(fields)
if (is.null(col.palette)){
# Color scheme stolen from sp library
col.palette<- c(
"#000033FF", "#00003CFF", "#000046FF", "#00004FFF", "#000058FF", "#000061FF",
"#00006BFF", "#000074FF", "#00007DFF", "#000086FF", "#000090FF", "#000099FF",
"#0000A2FF", "#0000ACFF", "#0000B5FF", "#0000BEFF", "#0000C7FF", "#0000D1FF",
"#0000DAFF", "#0000E3FF", "#0000ECFF", "#0000F6FF", "#0000FFFF", "#0700FFFF",
"#0E00FFFF", "#1600FFFF", "#1D00FFFF", "#2400FFFF", "#2B00FFFF", "#3300FFFF",
"#3A00FFFF", "#4100FFFF", "#4800FFFF", "#5000FFFF", "#5700FFFF", "#5E00FFFF",
"#6500FFFF", "#6D00FFFF", "#7400FFFF", "#7B00FFFF", "#8200FFFF", "#8A01FEFF",
"#9106F9FF", "#980BF4FF", "#9F0FF0FF", "#A714EBFF", "#AE19E6FF", "#B51DE2FF",
"#BC22DDFF", "#C426D9FF", "#CB2BD4FF", "#D230CFFF", "#D934CBFF", "#E139C6FF",
"#E83EC1FF", "#EF42BDFF", "#F647B8FF", "#FE4CB3FF", "#FF50AFFF", "#FF55AAFF",
"#FF59A6FF", "#FF5EA1FF", "#FF639CFF", "#FF6798FF", "#FF6C93FF", "#FF718EFF",
"#FF758AFF", "#FF7A85FF", "#FF7F80FF", "#FF837CFF", "#FF8877FF", "#FF8C73FF",
"#FF916EFF", "#FF9669FF", "#FF9A65FF", "#FF9F60FF", "#FFA45BFF", "#FFA857FF",
"#FFAD52FF", "#FFB24DFF", "#FFB649FF", "#FFBB44FF", "#FFBF40FF", "#FFC43BFF",
"#FFC936FF", "#FFCD32FF", "#FFD22DFF", "#FFD728FF", "#FFDB24FF", "#FFE01FFF",
"#FFE51AFF", "#FFE916FF", "#FFEE11FF", "#FFF20DFF", "#FFF708FF", "#FFFC03FF",
"#FFFF09FF", "#FFFF26FF", "#FFFF43FF", "#FFFF60FF")}
# ----------------------------------------------
# Set Spatial Extent
# ----------------------------------------------
if (!is.null(spatial.extent)) {
if (is.null(spatial.extent$lat.max)) spatial.extent$lat.max <- max(yyy)
if (is.null(spatial.extent$lat.min)) spatial.extent$lat.min <- min(yyy)
if (is.null(spatial.extent$lon.min)) spatial.extent$lon.min <- min(xxx)
if (is.null(spatial.extent$lon.max)) spatial.extent$lon.max <- max(xxx)
x.zoom.ind <- (xxx < spatial.extent$lon.max & xxx > spatial.extent$lon.min)
y.zoom.ind <- (yyy < spatial.extent$lat.max & yyy > spatial.extent$lat.min)
zoom.ind <- as.logical( x.zoom.ind & y.zoom.ind)
#sum(zoom.ind)
zzz <- zzz[zoom.ind]
xxx <- xxx[zoom.ind]
yyy <- yyy[zoom.ind]
}
# ------------------------------------------------------------------------
# Discretization size
# ------------------------------------------------------------------------
# Calculate the maximum number of grid cells(minimum grid cell area)
# to achieve the 10 random locations per cell from the prediction
# grid design.
#
# The minimum Longitude grid side = .28872 deg long
# This number comes from the stratified design used to sample the
# random locations based on extent and 200 equally spaced lon cells:
# .28872 deg long = (-124.72839 - -66.98426)/200
#
# The minimum Latitude grid side = .24421 deg lat
# This number comes from the stratified design used to sample the
# random locations based on extent and 100 equally spaced lat cells:
# .24421 deg lat= (48.97630 - 24.55572)/100
#------------------------------------------------------------------------
if (is.null(pred.grid.size)) {
# Calculate Maximum pred.grid.size for this region
pred.grid.size.max.xxx <- floor( (max(xxx) - min(xxx))/.28872 )
pred.grid.size.max.yyy <- floor( (max(yyy) - min(yyy))/.24421 )
if (pred.grid.size.max.xxx/2 < pred.grid.size.max.yyy)
pred.grid.size <- floor(pred.grid.size.max.xxx/2)
if (pred.grid.size.max.xxx > pred.grid.size.max.yyy*2)
pred.grid.size <- floor(pred.grid.size.max.yyy)
#pred.grid.size
}
# ----------------------------------------------
# Create Prediction Grid with as.image
# ----------------------------------------------
ttt.image <- as.image(zzz,
x= data.frame(xxx,yyy),
nrow=round(pred.grid.size*grid.size.ratio), # nrow=X direction
ncol=pred.grid.size, # ncol=Y direction
na.rm=TRUE)
if (!is.null(save.name)){
png(file=save.name,
bg="white",
width = plot.width,
height = plot.height)
}
image.plot(ttt.image,
col = col.palette, ...)
# zlim=c(0,5))
if (!is.null(main.text)){
title(main = main.text , font.main=4, line=2)
title(main = paste("Spatial Grid:",pred.grid.size,"x",
pred.grid.size*2), font.main=4, line=1, cex.main=0.75)}
# Add political Boundaries
# ----------------------------
#map('state',add=TRUE, lwd=2, col="yellow")
#map('state',add=TRUE, lwd=1.5, col="black")
if (!is.null(save.name)){
dev.off()
}
# --------------------------------------------------------------------------
} # end function
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# Point-in-Polygon Contours
# -----------------------------------------------------------------------------
# Daniel Fink
# 2.7.08
#
# Description
# -----------------
# For a given set of locations determine if they fall into
# a set of Polygon contours. Return one index (lenght of locations)
# for each unique level of polygon contours.
#
# Also compute quantiles for locations and make a pretty picture.
#
# Input
# ----------
# xxx, yyy - locations
# contour.polygons - list of polygon contours from contourLines
# function
#
# Output
# ----------
# Return one index (lenght of locations)
# for each unique level of polygon contours.
#
# Notes:
# ---------
#
# Further Development:
# ----------------------------
# -----------------------------------------------------------------------------
point.in.polygon.contours <- function(
xxx, yyy,
contour.polygons){
# ------------------------------------------
# Dummy Values/Calls
# ------------------------------------------
#contour.polygons <- sd.cont$contour.polygons
# ------------------------------------------
# Inits
# ------------------------------------------
require(splancs)
# ------------------------------------------
# Identify unique polygon levels
# ------------------------------------------
level.index <- rep(0,length(contour.polygons))
for (iii in 1:length(contour.polygons))
level.index[iii] <- contour.polygons[[iii]]$level
unique.levels <- sort(unique(level.index))
# Matrix of Contour indices
contour.index <- matrix(FALSE,length(xxx),length(unique.levels))
# Cycle through all Polygons in order
# ** Do point-in-polygon operations
# ** store indices according to polygon level
# ----------------------------------------------------------
#sum.points <- 0
for (jjj in 1:length(contour.polygons)) {
ttt.ind <- inpip(cbind(yyy,xxx),
cbind(contour.polygons[[jjj]]$y,
contour.polygons[[jjj]]$x))
# Construct/store contour indices
col.index <- (contour.polygons[[jjj]]$level == unique.levels)
contour.index[ ttt.ind, col.index] <- TRUE
}
# -----------------------
# Empirical Quantiles
empirical.quant <- apply(contour.index, 2, mean)
# ---------------------------------------------------------
# Construct Indices into nonoverlapping contours
# ---------------------------------------------------------
non.olap.index <- matrix(FALSE, NROW(contour.index),
NCOL(contour.index))
# Begin with smallest contour
non.olap.index[,NCOL(contour.index)] <-
contour.index[,NCOL(contour.index)]
# Sequentially subtract
for (iii in NCOL(contour.index):2){
non.olap.index[,(iii-1)] <- (contour.index[,(iii-1)] &
!contour.index[,iii])
}
# % of data in each contour
n.contour <- apply(non.olap.index, 2, sum)
# ---------------------------------------------------------
# Return contours as polygons too!!!
results.list <- list(
xxx = xxx,
yyy = yyy,
empirical.quant = empirical.quant,
contour.polygons = contour.polygons,
contour.index = contour.index,
contour.level.index = level.index,
non.olap.index = non.olap.index,
n.contour = n.contour)
return(results.list)
}#---------------------------------------------------------------------
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
# -------------------------------------------------------------------------------
# Smooth ST Predictions
#
# -------------------------------------------------------------------------------
smooth.st.predictions <- function(
kkk, # Single Time slice
pred.grid.size, # roughly twice desired plotting resolution
gam.smoothing.knots=25,
st.rough.dir,
st.rough.name ,
st.smooth.dir ,
st.smooth.name){
# ----------------
#shape.dir, # <- "C:\\users\\Research.STBDT\\Data\\BDT.shapefiles\\"
#shape.filename, # <- "STATES.shp"
#selected.state.names = NULL) {
# -----------------------------------------------
stp.name <- paste(st.rough.dir,st.rough.name,".",kkk,".RData",sep="")
load(stp.name) #st.pred
require(mgcv)
# -----------------------------------------------
xxx <- st.pred$xxx
yyy <- st.pred$yyy
#xxx.name <- "Lon"
#yyy.name <- "Lat"
zzz <- st.pred$pred
# -----------------------------------------------
require(mgcv)
d.gam <- gam( zzz ~ s(xxx,yyy, k=gam.smoothing.knots))
nnn.xxx <- pred.grid.size
nnn.yyy <- pred.grid.size
xxx.pred <- seq(from=min(xxx),to=max(xxx),length=nnn.xxx)
yyy.pred <- seq(from=min(yyy),to=max(yyy),length=nnn.yyy)
pred.design <- expand.grid(xxx=xxx.pred, yyy=yyy.pred)
# "Fuzz up" Prediction Grid to better fill in image.plot
pred.design$xxx <- pred.design$xxx + runif(NROW(pred.design),
min = -(abs(xxx.pred[2] - xxx.pred[1]))/2.,
max = (abs(xxx.pred[2] - xxx.pred[1]))/2.)
pred.design$yyy <- pred.design$yyy + runif(NROW(pred.design),
min = -(abs(yyy.pred[2] - yyy.pred[1]))/2.,
max = (abs(yyy.pred[2] - yyy.pred[1]))/2.)
# # -------------------------------------------------------
# # Cutout US States to reduce prediction time!
# # --------------------------------------------------------------
# if (!is.null(selected.state.names)){
# sites <- data.frame(lon=pred.design$xxx, lat=pred.design$yyy)
# #shape.dir <- "C:\\users\\Research.STBDT\\Data\\BDT.shapefiles\\"
# #shape.filename <- "STATES.shp"
# #selected.shape.names <-
# # c("New York", "Pennsylvania", "New Jersey",
# # "Ohio", "West Virginia", "Delaware", "Connecticut",
# # "Rhode Island", "Massachusetts",
# # "Vermont", "New Hampshire", "Maine",
# # "Maryland", "Virginia")
# att.selection.column.name <- "STATE_NAME"
# location.pip <- point.in.shapefile(
# sites,
# shape.dir,
# shape.filename,
# att.selection.column.name,
# selected.shape.names=selected.state.names)
# #plot(sites)
# #points(sites[location.pip,], col="red",cex=0.25)
# pred.design <- pred.design[ location.pip, ]
# }
# # -------------------------------
pred.gam <- predict(d.gam,
newdata=pred.design,
se.fit=FALSE, type="response")
st.pred <- data.frame(pred.design, pred=pred.gam)
names(st.pred)
dim(st.pred)
# -----------------------------------------------
smooth.filename <- paste(st.smooth.dir,st.smooth.name,".",kkk,".RData",sep="")
save(st.pred, file=smooth.filename)
# For initialization in Halloween.maps()
#smooth.filename <- paste(st.smooth.dir,st.smooth.name,".",1,".RData",sep="")
#save(st.pred, file=smooth.filename)
# -----------------------------------------------
# ------------------------------------------------------------
# Return Values
# ------------------------------------------------------------
} # end function
# --------------------------------------------------------------------------------------------
# -------------------------------------------------------------------------------------------
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# Load & Process SPAT_COVAR Data for Spatial Prediction
# --------------------------------------------------------------------------
# This function will load, subsample, and process the Spatial
# prediction data.
#
# Like the other functions I am writing, I will begin by keeping
# this as simple as possible. KISS!!
#
# INPUT
# ------------
# INPUT
# ------------
# pred.data.file <- character string for file location including directory
# pred.dir <- "~/norcar.temp/USA Prediction Grid/"
# pred.data.file <- paste(pred.dir,"Random.locations.NE.10.31.07.csv",sep="")
#
#
# This file is assumed to contain the following fields/information
#
# what happens if a field is missing?
# Should these fields be compared/match to the p.data$X fields used to
# develop the model?
#
#
# NNN.pred <- (sub)sample size of prediction data file. Defalult = NULL
# (defaults to whole data set)
# NNN <- 5000
# spatial.extent <- list( # NE Region
# lat.max <- 45.0,
# lat.min <- 39.0,
# lon.min <- -82.5,
# lon.max <- -67.0 )
#
# OUTPUT
# ------------
# D.pred - prediction data frame
# locs - locations corresponding to D.pred
#
# To do:
# ---------
# I need to describe the format of D.pred in detail so that I can
# generate new sets. Part of this will be to point to/describe the
# process that Roger and I went through to generate this data.
#
# Currently, I have hard coded the list of predictor variables that
# to be added to D.pred. I would like to add logic to match and
# keep only those predictors that match a list of predictor names
# target.var <- names(p.data$X)
# possibly matching the classes of the variables too. That would
# be very useful.
#
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
make.SPAT.COVAR.pred.data <- function(
pred.data.file,
NNN.pred = NULL,
spatial.extent = NULL) {
# ---------------------------------------------------
call <- match.call()
# ----------------------------------------------
# Load Data
# ----------------------------------------------
D.pred <- read.csv(file=pred.data.file)
#dim(D.pred) #27933 67
# ----------------------------------------------
# Set Spatial Extent
# ----------------------------------------------
if (!is.null(spatial.extent)) {
xxx <- D.pred$DECIMAL_LONGITUDE
yyy <- D.pred$DECIMAL_LATITUDE
if (is.null(spatial.extent$lat.max)) spatial.extent$lat.max <- max(yyy)
if (is.null(spatial.extent$lat.min)) spatial.extent$lat.min <- min(yyy)
if (is.null(spatial.extent$lon.min)) spatial.extent$lon.min <- min(xxx)
if (is.null(spatial.extent$lon.max)) spatial.extent$lon.max <- max(xxx)
x.zoom.ind <- (xxx < spatial.extent$lon.max & xxx > spatial.extent$lon.min)
y.zoom.ind <- (yyy < spatial.extent$lat.max & yyy > spatial.extent$lat.min)
zoom.ind <- as.logical( x.zoom.ind & y.zoom.ind)
#sum(zoom.ind)
D.pred <- D.pred[zoom.ind, ]
rm(xxx,yyy)
}
# ---------------------------------------------------------------------
# Convert regional NCLD classes counts to proportions
# ---------------------------------------------------------------------
# Currently, Rogers NLCD neighborhood variables in SPATCOVAR
# contain the counts of each landcover class within the given neighborhood.
# i.e percentages x 100
# # of cells = (a*r)^2
#
# This was only for earlier version ==>
# It should be a non-issue with the "new" version of
# "ebird.data.processing.12.03.07.R"
# ----------------------------------------------------
# NLCD01_CMN" "NLCD01_IMN", are already stored as %'s
# However, I am going to include them so that these
# predictors are 100% compatible with the ebird predictors.
# I need to fix the ebird data!!!
# ------------------------------------------------------------
nbhd.size <- c("A10R15", "A10R5", "A100R5")
nbhd.cell.size <- c(22500,2500,250000)
nlcd.vars <- c(
"NLCD01_N11", "NLCD01_N12",
"NLCD01_N21", "NLCD01_N22",
"NLCD01_N23", "NLCD01_N24",
"NLCD01_N31", "NLCD01_N41",
"NLCD01_N42", "NLCD01_N43",
"NLCD01_N52", "NLCD01_N71",
"NLCD01_N81", "NLCD01_N82",
"NLCD01_N90", "NLCD01_N95")
for (iii in 1:3) {
regional.nlcd.vars <- paste(nlcd.vars, nbhd.size[iii] ,sep="")
D.pred[,names(D.pred) %in% regional.nlcd.vars] <-
D.pred[,names(D.pred) %in%
regional.nlcd.vars]/nbhd.cell.size[iii]*100
}
# ------------------------------------------------------------
# Subsampling
# ------------------------------------------------------------
subsample.index <- NULL
if (!is.null(NNN.pred)) {
if (NNN.pred < NROW(D.pred)){
subsample.index <- sample(1:NROW(D.pred), NNN.pred)
D.pred <- D.pred[subsample.index, ]
}}
# ------------------------------------------------------------
# Predictor Processing
# ------------------------------------------------------------
y <- D.pred$DECIMAL_LATITUDE
x <- D.pred$DECIMAL_LONGITUDE
# List of D.NE predictors that need to be removed
remove.var <- c( "X", "DECIMAL_LATITUDE_CS", "DECIMAL_LONGITUDE_CS",
"NED48_ELEVATION", "BLOCKGROUP_FIPS_ESRI04" ,
"DECIMAL_LATITUDE", "DECIMAL_LONGITUDE")
# "NLCD01_IMPERV" , "NLCD01_LANDCOVER" )
D.pred <- D.pred[ , !(names(D.pred) %in% remove.var) ]
# BCR Processing: BCR == 0 occurs at coastline locations
# ---------------------------------------------------------------------
#points( loc.x[ D.pred$BCR == 0],
# loc.y[ D.pred$BCR == 0],
# col=4,
# cex=3.0,
# pch=5)
D.pred$BCR[ D.pred$BCR == 0] <- NA
D.pred$BCR <- as.factor(D.pred$BCR)
D.pred$NLCD01_LANDCOVER <- as.factor(D.pred$NLCD01_LANDCOVER)
# Append Lat & lon
# ------------------------------------------
D.pred <- cbind(D.pred, x, y)
# ------------------------------------------------------------
# Return Values
# ------------------------------------------------------------
locs <- data.frame(x = x, y=y)
data.list <- list(
call = call,
locs = locs,
D.pred = D.pred,
subsample.index=subsample.index)
return(data.list)
} # end function
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# -----------------------------------------------------------------------------------------------------------
# Plot Monthly Training Data Map
# -----------------------------------------------------------------------------------------------------------
monthly.maps <- function(
xxx,
yyy,
jdates,
zzz, # same length as (xxx, yyy, jdates)
zzz.index.1, #red obs > pred ===> Predictions too BIG
zzz.index.2)
{# ----------------------------------------
mo.txt <- c("Jan","Feb","Mar","Apr","May","Jun",
"Jul","Aug","Sep","Oct","Nov","Dec")
require(maps)
par(mfrow=c(3,4),mar=c(0,0,1,0),cex=1.0)
n.period <- 12
for (iii in 1:n.period) {
#Subseting Criterion
# -------------------------------------
#ll <- min(jdates)
#ul <- max(jdates)
#ttt.index <- jdates >= ll & jdates <= ul
ll <- (365/n.period)*(iii-1)
ul <- (365/n.period)*(iii)
ttt.index <- jdates > ll & jdates < ul
# --------------------------------------
plot( xxx[ttt.index],
yyy[ttt.index],
#type="n",
cex=0.25,
pch=19,
col="grey",
axes = FALSE,
main=paste( mo.txt[iii], " ", format(ll, digits=3),":",
format(ul, digits=3)," + propor = ",
format(sum(zzz[ttt.index] > 0)/ sum(ttt.index),
digits=3)))
box()
# ---------------------------------------
# Add negative residuals in blue
# RED, neg res ==> ppp> yyy ==> almost all occur when yyy == 0)
# ----------------------------------------
ttt.index <- jdates > ll & jdates < ul & zzz.index.1
points( xxx[ttt.index],
yyy[ttt.index],
cex=sqrt(abs(zzz[ttt.index])),
col="red",
#cex=0.25,
pch=1)
# BLUE ==> ppp < yyy
ttt.index <- jdates > ll & jdates < ul & zzz.index.2
points( xxx[ttt.index],
yyy[ttt.index],
cex=sqrt(abs(zzz[ttt.index])),
col="blue",
#cex=0.25,
pch=4)
# Add political Boundaries
# ----------------------------
map('state',add=TRUE, lwd=2, col="yellow")
map('state',add=TRUE, lwd=1.5, col="black")
} # end iii = months
# ------------------------------------------------------------
# Return Values
# ------------------------------------------------------------
return()
} # end function
# --------------------------------------------------------------------------------------------
# -------------------------------------------------------------------------------------------
# ------------------------------------------------------------------
# FOR LOOP over time slices (within season)
# * Load Predicted Surface
# * Pixelate it
# * Stack pixelated surface into Clustering design
# row = pixel/locations, cols= times
# ==> group trajectories
# Q: rows come from stack/unstack(ttt.image) ??
# * END FOR
#
# Then cluster the Clustering design
# Output: each row, i.e. pixel/location will get a cluster
# label and a silhoullette number
#
# Plot these on a map, perhaps one color at a time.
#
#
# Inputs:
# ---------
# stp.save.name, #bs.stp.save.name
# temporal.index,
# pred.grid.size,
# grid.size.ratio,
# spatial.index=NULL This is an index on the prediction vector,
# usually used to select regions (BCR's or states)
# Outputs:
# ---------
#return.list <- list(call=call,
# X=X.cluster,
# X.image = ttt.image)
# ------------------------------------------------------------------
make.functional.data.design.matrix <- function(
stp.save.dir, #bs.stp.save.dir
stp.save.name, #bs.stp.save.name
temporal.index,
pred.grid.size,
grid.size.ratio,
spatial.index=NULL){
# ----------------------------------
call <- match.call()
# ------------------------------------------------------------
X.cluster <- NULL
# ------------------------------------------------
for (iii in (temporal.index)){
# ----------------------------------------------
# Load Space-Time Predictions From file
# ----------------------------------------------
stp.name <- paste(stp.save.dir,stp.save.name,".",iii,".RData",sep="")
load(stp.name) # st.pred
# ----------------------------------------------
# Spatial Index
# ----------------------------------------------
if (is.null(spatial.index))
spatial.index <- rep(TRUE, length(st.pred$xxx))
# ----------------------------------------------
# Create Prediction Grid with as.image
# ----------------------------------------------
xxx <- st.pred$xxx[spatial.index]
yyy <- st.pred$yyy[spatial.index]
zzz <- st.pred$pred[spatial.index]
# ----------------------------------------------
# Stack/Unstack using as.image
# ----------------------------------------------
ttt.image <- as.image(zzz,
x= data.frame(xxx,yyy),
nrow=round(pred.grid.size*grid.size.ratio), # nrow=X direction
ncol=pred.grid.size,
na.rm=TRUE) # ncol=Y direction
#names(ttt.image)
# ---------------------
zzz.vector <- rep(0, length( ttt.image$ind[,1] ))
for (jjj in 1:length( ttt.image$ind[,1] ))
zzz.vector[jjj] <- ttt.image$z[ ttt.image$ind[jjj,1],
ttt.image$ind[jjj,2]]
#zzz.loc.x <- ttt.image$x[ttt.image$ind[,1]]
#zzz.loc.y <- ttt.image$y[ttt.image$ind[,2]]
# ---------------------
#hist(zzz.vector)
#image.plot(ttt.image)
#points(ttt.image$x[ttt.image$ind[,1]],
# ttt.image$y[ttt.image$ind[,2]],
# cex=0.5*zzz.vector ,
# col="yellow")
# ---------------------
# ----------------------------------------------
# Add to cluster design
# ----------------------------------------------
X.cluster <- cbind(X.cluster, zzz.vector)
} # end iii
# ------------------------------------------
# Return Values
# ------------------------------------------
return.list <- list(call=call,
X=X.cluster,
X.image = ttt.image)
return(return.list)
# --------------------------------------------------------------------------
} # end function
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
|