1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
/**
*
* @file plugins/CriticalPath/ParseDAG.cpp
*
* @copyright 2008-2024 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
* Univ. Bordeaux. All rights reserved.
*
* @author Camille Ordronneau
* @author Johnny Jazeix
* @author Mathieu Faverge
*
* @date 2024-07-17
*/
#include "ParseDAG.hpp"
typedef boost::graph_traits<graph_t>::vertex_iterator vertex_iterator_t;
typedef boost::graph_traits<graph_t>::in_edge_iterator in_edge_iterator_t;
typedef boost::graph_traits<graph_t>::edge_descriptor edge_descriptor_t;
typedef boost::graph_traits<graph_t>::vertex_descriptor vertex_descriptor_t;
int get_job_id(std::string task) {
std::string strId = task.substr(5); // task_88 ---> 88
int job_id = std::stoi(strId);
return job_id;
}
std::pair<std::pair<double, size_t>, double> critical_path_length(graph_t &g, std::vector<double> &task_time) {
/* Order the vertices topologically */
std::deque<int> topo_order;
topological_sort(g, std::front_inserter(topo_order),
vertex_index_map(identity_property_map()));
std::pair<std::pair<double, size_t>, double> ret;
std::pair<double, vertex_descriptor_t> length__last_task; // Returned value
length__last_task.first = 0;
length__last_task.second = 0;
/* Computes the length of the longest path ending at the v
where v is every vertex in the graph in topological order */
int n = 1;
for (std::deque<int>::iterator i = topo_order.begin(); i != topo_order.end(); ++i, ++n) {
/* Task_time is a vector indexed with jobId,
task_time.size() is the highest jobId parsed */
g[*i].task_id = get_job_id(g[*i].task_name);
g[*i].not_max_breadth = 0;
if (g[*i].task_id >= (int)task_time.size()) {
g[*i].execution_time = 0;
}
else {
g[*i].execution_time = get_time(g[*i].task_id, task_time);
}
g[*i].time_elapsed = 0;
if (in_degree(*i, g)) { // if g[*i] is not a root
double max_time_elapsed = 0;
std::pair<in_edge_iterator_t, in_edge_iterator_t> e = in_edges(*i, g);
while (e.first != e.second) {
edge_descriptor_t ed = *e.first;
vertex_descriptor_t s = source(ed, g);
max_time_elapsed = std::max(max_time_elapsed, g[s].time_elapsed);
e.first++;
}
g[*i].time_elapsed = max_time_elapsed + g[*i].execution_time;
}
else {
g[*i].time_elapsed = g[*i].execution_time;
/* If the vertex is a root then its elapsed time is equal to its execution time */
}
/* Updating critical path length as it is the max of max_time_elapsed of all vertexes */
if (length__last_task.first < g[*i].time_elapsed || (length__last_task.first == g[*i].time_elapsed && g[*i].execution_time == 0)) {
length__last_task.second = *i;
length__last_task.first = g[*i].time_elapsed;
}
}
ret.first = std::move(length__last_task);
ret.second = n - 1;
return ret;
}
void dag_draw_critical_path(graph_t &g, int source_task) {
while (in_degree(source_task, g)) {
double max_value = 0;
std::pair<in_edge_iterator_t, in_edge_iterator_t> e = in_edges(source_task, g);
vertex_descriptor_t target_task = source_task;
while (e.first != e.second) {
edge_descriptor_t ed = *e.first;
vertex_descriptor_t s = source(ed, g);
double last_max = max_value;
max_value = std::max(max_value, g[s].time_elapsed);
if (max_value != last_max || max_value == 0) {
source_task = s;
}
e.first++;
}
remove_edge(source_task, target_task, g);
add_edge(source_task, target_task, Edge { "red" }, g);
}
}
std::vector<int> critical_path(graph_t &g, int source_task) {
std::vector<int> criticalPath; // Returned value
while (in_degree(source_task, g)) {
criticalPath.push_back(g[source_task].task_id);
double max_recorded_value = 0;
std::pair<in_edge_iterator_t, in_edge_iterator_t> e = in_edges(source_task, g);
vertex_descriptor_t target_task = source_task;
while (e.first != e.second) {
edge_descriptor_t ed = *e.first;
vertex_descriptor_t s = source(ed, g);
double last_max = max_recorded_value;
max_recorded_value = std::max(max_recorded_value, g[s].time_elapsed);
if (max_recorded_value != last_max || max_recorded_value == 0) {
source_task = s;
}
e.first++;
}
remove_edge(source_task, target_task, g);
add_edge(source_task, target_task, Edge { "red" }, g);
}
criticalPath.push_back(g[source_task].task_id);
return criticalPath;
}
std::vector<int> critical_last_tasks(graph_t &g, double max_value) {
std::vector<int> critical_last_tasks;
for (std::pair<vertex_iterator_t, vertex_iterator_t> vp = vertices(g);
vp.first != vp.second; ++vp.first) {
if (g[*vp.first].time_elapsed == max_value && out_degree(*vp.first, g) == 0) {
critical_last_tasks.push_back(*vp.first);
}
}
return critical_last_tasks;
}
std::pair<double, pair> get_number_processing(graph_t &g, double begin, double end) {
std::pair<double, pair> ret; // Returned Value
ret.first = 0; // ret.first is the max breadth
ret.second.first = begin;
ret.second.second = end;
// ret.second is a pair representing the interval where this max breadth was achieved
if (end <= begin) {
return ret;
}
double count = 0;
double count_right = 0;
double count_left = 0;
double new_begin = ret.second.first;
double new_end = ret.second.second;
for (std::pair<vertex_iterator_t, vertex_iterator_t> vp = vertices(g);
vp.first != vp.second; ++vp.first) {
double task_start = g[*vp.first].time_elapsed - g[*vp.first].execution_time;
double task_end = g[*vp.first].time_elapsed;
if (g[*vp.first].execution_time > 0) {
/**** Smaller Full Overlapping ****/
if ((begin <= task_start && task_end <= end) && (begin != task_start || task_end != end)) {
/* If a task is strictly within (begin-end) just return because (begin - end)
cannot possibly be the exact interval where the max breadth is obtained.
But the max breadth can be achived in an interval within (begin - end)*/
ret.first = -1;
ret.second.first = 0;
ret.second.second = 0;
return ret;
}
/**** Right Overlapping ****/
if ((begin <= task_start && task_start < end) && end < task_end) {
/* We update the right interval which overlaps with most other tasks
(This interval is now (new_begin - end)) */
if (task_start > new_begin) {
new_begin = task_start;
}
count_right++; // Incrementing right overlapping counter
}
/**** Left Overlapping ****/
else if (task_start < begin && (begin < task_end && task_end <= end)) {
/* We update the left interval which overlaps with most other tasks
(This interval is now (begin - new_end)*/
if (task_end < new_end) {
new_end = task_end;
}
count_left++; // Incrementing left overlapping counter
}
/**** Bigger Full Overlapping ****/
else if (task_start <= begin && end <= task_end) {
/* If a task is overlapping and strictly bigger than (begin-end),
then we increase our normal count */
g[*vp.first].not_max_breadth = 1;
count++;
}
}
}
/* We then update ret.first with count + max(count_right, count_left),
and we update the correspondant side of the interval */
if (count_right > count_left) {
ret.second.first = new_begin;
}
else if (count_right < count_left) {
ret.second.second = new_end;
}
count += std::max(count_right, count_left);
ret.first = count;
return ret;
}
std::pair<double, pair> max_breadth(graph_t &g) {
std::pair<double, pair> max_breadth; // Returned value
std::pair<double, pair> num_process;
max_breadth.first = 0;
for (std::pair<vertex_iterator_t, vertex_iterator_t> vp = vertices(g);
vp.first != vp.second; ++vp.first) {
if (g[*vp.first].not_max_breadth == 0) {
num_process = get_number_processing(g, g[*vp.first].time_elapsed - g[*vp.first].execution_time,
g[*vp.first].time_elapsed);
if (num_process.first > max_breadth.first) {
max_breadth = num_process;
}
}
}
return max_breadth;
}
|