1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
/**
*
* @file plugins/MatrixVisualizer/Common/Quadtree.cpp
*
* @copyright 2008-2024 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
* Univ. Bordeaux. All rights reserved.
*
* @author Camille Ordronneau
*
* @date 2024-07-17
*/
#include <assert.h>
#include <cmath>
#include "Quadtree.hpp"
/**
* This constant is the precision where the algorithm stops slicing the matrix
*/
#define PRECISION 1.e-15
Quadtree::Quadtree(symbol_matrix_t *matrix) :
Zoom(matrix) {
// Fill correct colors
move(0.f, 1.f, 0.f, 1.f);
}
Quadtree::~Quadtree() { }
void Quadtree::move(double x_start, double x_end, double y_start, double y_end) {
// Check positions
assert(x_end >= x_start);
assert(y_end >= y_start);
assert(y_end >= x_start);
// Check for out of bounds
assert(x_start >= 0.);
assert(y_start >= 0.);
assert(x_end <= 1.);
assert(y_end <= 1.);
sliced_matrix_t m;
// Convert to column/row indexes
m.start_col = x_start * m_matrix->m_colsnbr;
m.end_col = x_end * m_matrix->m_colsnbr - 1;
m.start_row = y_start * m_matrix->m_rowsnbr;
m.end_row = y_end * m_matrix->m_rowsnbr - 1;
m.start_cblk = 0;
m.end_cblk = m_matrix->m_cblknbr - 1;
m.m_matrix = m_matrix;
this->start_col = m.start_col;
this->start_row = m.start_row;
this->end_col = m.end_col;
this->end_row = m.end_row;
int nb_cols = m.end_col - m.start_col + 1;
int nb_rows = m.end_row - m.start_row + 1;
float y_coeff = (float)DEFAULT_LEVEL / ((float)nb_rows);
float x_coeff = (float)DEFAULT_LEVEL / ((float)nb_cols);
// fill the color matrix with white color
for (int i = 0; i < DEFAULT_LEVEL; ++i) {
for (int j = 0; j < DEFAULT_LEVEL; ++j) {
m_colors[i][j] = 1.f;
}
}
// if the size of the matrix is less than DEFAULT_LEVEL, the zooming method is used
if (nb_cols < DEFAULT_LEVEL || nb_rows < DEFAULT_LEVEL) {
symbol_cblk_t *cblk;
symbol_blok_t *blok;
int start_cblk = 0;
int end_cblk = 0;
cblk = m_matrix->m_cblktab;
for (int i = 0; i < m_matrix->m_cblknbr; ++i, cblk++) {
if ((cblk->m_fcolnum <= start_col) && (start_col <= cblk->m_lcolnum)) {
start_cblk = i;
start_col = cblk->m_fcolnum;
}
if ((cblk->m_fcolnum <= start_row) && (start_row <= cblk->m_lcolnum)) {
start_row = cblk->m_fcolnum;
}
if ((cblk->m_fcolnum <= end_col) && (end_col <= cblk->m_lcolnum)) {
end_cblk = i + 1;
end_col = cblk->m_lcolnum;
}
if ((cblk->m_fcolnum <= end_row) && (end_row <= cblk->m_lcolnum)) {
end_row = cblk->m_lcolnum;
}
}
nb_cols = end_col - start_col + 1;
nb_rows = end_row - start_row + 1;
x_coeff = (float)DEFAULT_LEVEL / ((float)nb_cols);
y_coeff = (float)DEFAULT_LEVEL / ((float)nb_rows);
cblk = m_matrix->m_cblktab + start_cblk;
for (int i = start_cblk; i < end_cblk; ++i, cblk++) {
int fbloknum = cblk[0].m_bloknum;
int lbloknum = cblk[1].m_bloknum;
// Get first block size in col from x to x_end
int xbegin = (cblk->m_fcolnum - start_col) * x_coeff;
int xend = (cblk->m_lcolnum + 1 - start_col) * x_coeff;
float cblk_color = cblk->m_color;
blok = m_matrix->m_bloktab + fbloknum;
for (int j = fbloknum; j < lbloknum; ++j, blok++) {
if ((blok->m_lrownum < start_row) || (blok->m_frownum > end_row)) {
continue;
}
// Get first block size in row from y to y_end
int ybegin = (blok->m_frownum - start_row) * y_coeff;
int yend = (blok->m_lrownum + 1 - start_row) * y_coeff;
float color = blok->m_color == -1. ? cblk_color : blok->m_color;
for (int m = xbegin; m < xend; m++) {
for (int n = ybegin; n < yend; n++) {
m_colors[m][n] = color;
}
}
}
}
}
// else the quadtree method is used
else {
createTiles(m, x_coeff, y_coeff);
}
}
void Quadtree::createTiles(sliced_matrix_t &m, float x_coeff, float y_coeff) {
symbol_cblk_t *cblk;
int start_cblk = m.start_cblk;
int end_cblk = m.end_cblk;
// Slice the matrix into 4 sliced matrixes
for (int i = m.start_row; i < m.end_row; i += (m.end_row - m.start_row + 1) / 2) {
for (int j = m.start_col; j < m.end_col; j += (m.end_col - m.start_col + 1) / 2) {
sliced_matrix_t new_matrix;
new_matrix.m_matrix = m.m_matrix;
// Fist row and column of the new matrix
new_matrix.start_row = i;
new_matrix.start_col = j;
// Calcute the last row and column of the new matrix
if (i + ((m.end_row - m.start_row + 1) / 2) == m.end_row) {
new_matrix.end_row = m.end_row;
}
else {
new_matrix.end_row = i + ((m.end_row - m.start_row + 1) / 2) - 1;
}
if (j + ((m.end_col - m.start_col + 1) / 2) == m.end_col) {
new_matrix.end_col = m.end_col;
}
else {
new_matrix.end_col = j + ((m.end_col - m.start_col + 1) / 2) - 1;
}
cblk = new_matrix.m_matrix->m_cblktab;
// first and last column block of the new matrix
for (int k = 0; k < new_matrix.m_matrix->m_cblknbr; ++k, cblk++) {
if ((cblk->m_fcolnum <= new_matrix.start_col) && (new_matrix.start_col <= cblk->m_lcolnum)) {
start_cblk = k;
}
if ((cblk->m_fcolnum <= new_matrix.end_col) && (new_matrix.end_col <= cblk->m_lcolnum)) {
end_cblk = k;
}
}
new_matrix.start_cblk = start_cblk;
new_matrix.end_cblk = end_cblk;
// Calculate the average color
new_matrix.color_avg = average(new_matrix);
// Calculate the color error
float color_error = error(new_matrix);
if (color_error <= PRECISION || ((new_matrix.end_row - new_matrix.start_row) / 2) * y_coeff <= 1 || ((new_matrix.end_col - new_matrix.start_col) / 2) * x_coeff <= 1) {
int x, y, x_end, y_end;
// Get the start and the end of the zone to be fill in the color matrix
x = (new_matrix.start_col - this->start_col) * x_coeff;
x_end = (new_matrix.end_col - this->start_col) * x_coeff;
y_end = (new_matrix.end_row - this->start_row) * y_coeff;
y = (new_matrix.start_row - this->start_row) * y_coeff;
// Fill the color matrix
for (int m = x; m <= x_end; m++) {
for (int n = y; n <= y_end; n++) {
m_colors[m][n] = new_matrix.color_avg;
}
}
}
else {
// recursive call which means reslice the matrix again
createTiles(new_matrix, x_coeff, y_coeff);
}
}
}
}
float Quadtree::average(sliced_matrix_t &m) {
symbol_cblk_t *cblk;
symbol_blok_t *blok;
int start_cblk = m.start_cblk;
int end_cblk = m.end_cblk;
cblk = m.m_matrix->m_cblktab + start_cblk;
float average = 0.;
for (int i = start_cblk; i <= end_cblk; ++i, cblk++) {
int x = 0, x_end = 0;
// Get first block size in col from x to x_end
if (i == start_cblk && i != end_cblk) {
x = m.start_col;
x_end = cblk->m_lcolnum;
}
else if (i == end_cblk && i != start_cblk) {
x = cblk->m_fcolnum;
x_end = m.end_col;
}
else if (i == end_cblk && i == start_cblk) {
x = m.start_col;
x_end = m.end_col;
}
else {
x = cblk->m_fcolnum;
x_end = cblk->m_lcolnum;
}
float cblk_color = cblk->m_color;
int fbloknum = cblk[0].m_bloknum;
int lbloknum = cblk[1].m_bloknum;
blok = m.m_matrix->m_bloktab + fbloknum;
float somme = 0.;
int y = 0, y_end = 0;
for (int j = fbloknum; j < lbloknum; ++j, blok++) {
if ((blok->m_lrownum < m.start_row) || (blok->m_frownum > m.end_row)) {
continue;
}
// Get first block size in row from y to y_end
if ((blok->m_lrownum >= m.start_row) && (blok->m_lrownum < m.end_row)) {
y = m.start_row;
y_end = blok->m_lrownum;
}
else if ((blok->m_frownum <= m.end_row) && (blok->m_frownum > m.start_row)) {
y = blok->m_frownum;
y_end = m.end_row;
}
else if ((blok->m_frownum < m.start_row) && (blok->m_lrownum > m.end_row)) {
y = m.start_row;
y_end = m.end_row;
}
else {
y = blok->m_frownum;
y_end = blok->m_lrownum;
}
float color = blok->m_color == -1. ? cblk_color : blok->m_color;
somme += (y_end - y + 1) * (x_end - x + 1);
average += (float)((y_end - y + 1) * (x_end - x + 1) * color) / ((m.end_col - m.start_col) * (m.end_row - m.start_row));
}
average += (float)(((x_end - x + 1) * (m.end_row - m.start_row) - somme) * 1.f) / ((m.end_col - m.start_col) * (m.end_row - m.start_row));
}
if (average >= 1.f) {
return 1.f;
}
return average;
}
float Quadtree::error(sliced_matrix_t &m) {
symbol_cblk_t *cblk;
symbol_blok_t *blok;
int start_cblk = m.start_cblk;
int end_cblk = m.end_cblk;
cblk = m.m_matrix->m_cblktab + start_cblk;
float err = 0.;
for (int i = start_cblk; i <= end_cblk; ++i, cblk++) {
int x = 0, x_end = 0;
// Get first block size in col from x to x_end
if (i == start_cblk && i != end_cblk) {
x = m.start_col;
x_end = cblk->m_lcolnum;
}
else if (i == end_cblk && i != start_cblk) {
x = cblk->m_fcolnum;
x_end = m.end_col;
}
else if (i == end_cblk && i == start_cblk) {
x = m.start_col;
x_end = m.end_col;
}
else {
x = cblk->m_fcolnum;
x_end = cblk->m_lcolnum;
}
float cblk_color = cblk->m_color;
int fbloknum = cblk[0].m_bloknum;
int lbloknum = cblk[1].m_bloknum;
blok = m.m_matrix->m_bloktab + fbloknum;
float somme = 0.;
int y = 0, y_end = 0;
for (int j = fbloknum; j < lbloknum; ++j, blok++) {
if ((blok->m_lrownum < m.start_row) || (blok->m_frownum > m.end_row)) {
continue;
}
// Get first block size in row from y to y_end
if ((blok->m_lrownum >= m.start_row) && (blok->m_lrownum < m.end_row)) {
y = m.start_row;
y_end = blok->m_lrownum;
}
else if ((blok->m_frownum <= m.end_row) && (blok->m_frownum > m.start_row)) {
y = blok->m_frownum;
y_end = m.end_row;
}
else if ((blok->m_frownum < m.start_row) && (blok->m_lrownum > m.end_row)) {
y = m.start_row;
y_end = m.end_row;
}
else {
y = blok->m_frownum;
y_end = blok->m_lrownum;
}
float color = blok->m_color == -1. ? cblk_color : blok->m_color;
somme += (y_end - y + 1) * (x_end - x + 1);
err += (float)((y_end - y + 1) * (x_end - x + 1) * (color - m.color_avg)) / (float)((m.end_col - m.start_col) * (m.end_row - m.start_row));
}
err += ((float)(((x_end - x + 1) * (m.end_row - m.start_row) - somme) * (1.f - m.color_avg)) / (float)((m.end_col - m.start_col) * (m.end_row - m.start_row)));
}
return fabs(err);
}
|