1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548
|
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\begin_preamble
\usepackage{sourcecodepro}
\usepackage[parfill]{parskip}
\usepackage{enumitem}
\setlist[itemize]{leftmargin=*}
\usepackage{minted}
\usepackage{mdframed}
\definecolor{bg}{rgb}{0.95,0.95,0.95}
\usepackage{hyperref}
\hypersetup{
colorlinks,
citecolor=black,
filecolor=black,
linkcolor=black,
urlcolor=black
}
\end_preamble
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts true
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize 12
\spacing single
\use_hyperref false
\papersize default
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2.5cm
\topmargin 2.5cm
\rightmargin 2.5cm
\bottommargin 2.5cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
UseRawInputEncoding
\end_layout
\begin_layout Plain Layout
\backslash
begin{titlepage}
\end_layout
\begin_layout Plain Layout
\backslash
centering
\end_layout
\begin_layout Plain Layout
\backslash
vspace{1cm}
\end_layout
\begin_layout Plain Layout
{
\backslash
scshape
\backslash
LARGE VkFFT - Vulkan/CUDA/HIP/OpenCL/Level Zero Fast Fourier Transform library
\backslash
par}
\end_layout
\begin_layout Plain Layout
\backslash
vspace{1.5cm}
\end_layout
\begin_layout Plain Layout
{
\backslash
huge
\backslash
bfseries API guide with examples
\backslash
par}
\end_layout
\begin_layout Plain Layout
\backslash
vspace{2cm}
\end_layout
\begin_layout Plain Layout
{
\backslash
Large Dmitrii Tolmachev
\backslash
par}
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\backslash
vspace{1cm}
\end_layout
\begin_layout Plain Layout
{
\backslash
large August 2022, version 1.2.26
\backslash
par}
\end_layout
\begin_layout Plain Layout
\backslash
end{titlepage}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Newpage newpage
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset toc
LatexCommand tableofcontents
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Newpage newpage
\end_inset
\end_layout
\begin_layout Section
Introduction
\end_layout
\begin_layout Standard
This document describes VkFFT - Vulkan/CUDA/HIP/OpenCL/Level Zero Fast Fourier
Transform library.
It describes the features and current limitations of VkFFT, explains the
API and compares it to other FFT libraries (like FFTW and cuFFT) on the
set of examples.
It is by no means the final version, so if there is something unclear -
feel free to contact me (dtolm96@gmail.com), so I can update it.
\end_layout
\begin_layout Standard
\begin_inset Newpage newpage
\end_inset
\end_layout
\begin_layout Section
Using the VkFFT API
\end_layout
\begin_layout Standard
This chapter will cover the basics of VkFFT.
Fourier transform of a sequence is called Discrete Fourier Transform (DFT).
It is defined by the following formula:
\begin_inset Formula
\begin{equation}
X_{k}=\stackrel[n=0]{N-1}{\sum}x_{n}e^{-\frac{2\pi i}{N}nk}=\mathrm{DFT}{}_{N}(x_{n},k),\label{eq:dft}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
where
\begin_inset Formula $x_{n}$
\end_inset
is the input sequence,
\begin_inset Formula $N$
\end_inset
is the length of the input sequence and
\begin_inset Formula $k\in[0,N-1],k\in\mathbb{Z}$
\end_inset
is the output index, corresponding to frequency in Fourier space.
Corresponding to that, inverse DFT is defined as following:
\begin_inset Formula
\begin{equation}
x_{n}=\stackrel[k=0]{\mathrm{N-1}}{\sum}X_{k}e^{\frac{2\pi i}{N}nk}=\mathrm{iDFT}{}_{N}(X_{k},n)
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
VkFFT follows the same definitions as FFTW and cuFFT - forward FFT has the
exponent sign
\begin_inset Formula $-1$
\end_inset
, while the inverse has the exponent sign
\begin_inset Formula $1$
\end_inset
.
Note, that inverse transform by default is unnormalized, so to get the
input sequence after FFT + iFFT, the user has to divide the result by
\begin_inset Formula $N$
\end_inset
.
\end_layout
\begin_layout Subsection
Installing VkFFT
\end_layout
\begin_layout Standard
VkFFT is distributed as a header-only library.
The installation process consists of the following steps:
\end_layout
\begin_layout Enumerate
\noindent
\align left
Copy vkFFT.h file into one of the directories included in the user's project.
\end_layout
\begin_layout Enumerate
\noindent
Define VKFFT_BACKEND as a number corresponding to the API used in the user's
project: 0 - Vulkan, 1 - CUDA, 2 - HIP, 3 - OpenCL, 4 - Level Zero.
Definition is done like:
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{make}
\end_layout
\begin_layout Plain Layout
-DVKFFT_BACKEND=X
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
in GCC or as
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{cmake}
\end_layout
\begin_layout Plain Layout
set(VKFFT_BACKEND 1 CACHE STRING "0 - Vulkan, 1 - CUDA, 2 - HIP, 3 - OpenCL,
4 - Level Zero")
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
in CMake.
\end_layout
\begin_layout Enumerate
Depending on the API backend, the project must use additional libraries
for run-time compilation:
\end_layout
\begin_deeper
\begin_layout Enumerate
Vulkan API: SPIRV, glslang and Vulkan.
Define VK_API_VERSION to the available Vulkan version.
Sample CMakeLists can look like this:
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{cmake}
\end_layout
\begin_layout Plain Layout
find_package(Vulkan REQUIRED)
\end_layout
\begin_layout Plain Layout
target_compile_definitions(${PROJECT_NAME} PUBLIC -DVK_API_VERSION=11)#10
- Vulkan 1.0, 11 - Vulkan 1.1, 12 - Vulkan 1.2
\end_layout
\begin_layout Plain Layout
target_include_directories(${PROJECT_NAME} PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/gl
slang-master/glslang/Include/)
\end_layout
\begin_layout Plain Layout
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/glslang-master)
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
target_include_directories(${PROJECT_NAME} PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/vk
FFT/)
\end_layout
\begin_layout Plain Layout
add_library(VkFFT INTERFACE)
\end_layout
\begin_layout Plain Layout
target_compile_definitions(VkFFT INTERFACE -DVKFFT_BACKEND=0)
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
target_link_libraries(${PROJECT_NAME} PUBLIC SPIRV glslang Vulkan::Vulkan
VkFFT)
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
CUDA API: CUDA and NVRTC.
Sample CMakeLists can look like this:
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{cmake}
\end_layout
\begin_layout Plain Layout
find_package(CUDA 9.0 REQUIRED)
\end_layout
\begin_layout Plain Layout
enable_language(CUDA)
\end_layout
\begin_layout Plain Layout
set_property(TARGET ${PROJECT_NAME} PROPERTY CUDA_ARCHITECTURES 35 60 70
75 80 86)
\end_layout
\begin_layout Plain Layout
target_compile_options(${PROJECT_NAME} PUBLIC "$<$<COMPILE_LANGUAGE:CUDA>:SHELL:
\end_layout
\begin_layout Plain Layout
-DVKFFT_BACKEND=${VKFFT_BACKEND}
\end_layout
\begin_layout Plain Layout
-gencode arch=compute_35,code=compute_35
\end_layout
\begin_layout Plain Layout
-gencode arch=compute_60,code=compute_60
\end_layout
\begin_layout Plain Layout
-gencode arch=compute_70,code=compute_70
\end_layout
\begin_layout Plain Layout
-gencode arch=compute_75,code=compute_75
\end_layout
\begin_layout Plain Layout
-gencode arch=compute_80,code=compute_80
\end_layout
\begin_layout Plain Layout
-gencode arch=compute_86,code=compute_86>")
\end_layout
\begin_layout Plain Layout
set_target_properties(${PROJECT_NAME} PROPERTIES CUDA_SEPARABLE_COMPILATION
ON)
\end_layout
\begin_layout Plain Layout
set_target_properties(${PROJECT_NAME} PROPERTIES CUDA_RESOLVE_DEVICE_SYMBOLS
ON)
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
find_library(CUDA_NVRTC_LIB libnvrtc nvrtc HINTS "${CUDA_TOOLKIT_ROOT_DIR}/lib64
" "${LIBNVRTC_LIBRARY_DIR}" "${CUDA_TOOLKIT_ROOT_DIR}/lib/x64" /usr/lib64
/usr/local/cuda/lib64)
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
target_include_directories(${PROJECT_NAME} PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/vk
FFT/)
\end_layout
\begin_layout Plain Layout
add_library(VkFFT INTERFACE)
\end_layout
\begin_layout Plain Layout
target_compile_definitions(VkFFT INTERFACE -DVKFFT_BACKEND=1)
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
target_link_libraries(${PROJECT_NAME} PUBLIC ${CUDA_LIBRARIES} cuda ${CUDA_NVRTC
_LIB} VkFFT)
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
HIP API: HIP and HIPRTC.
Sample CMakeLists can look like this:
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{cmake}
\end_layout
\begin_layout Plain Layout
list(APPEND CMAKE_PREFIX_PATH /opt/rocm/hip /opt/rocm)
\end_layout
\begin_layout Plain Layout
find_package(hip)
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
target_include_directories(${PROJECT_NAME} PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/vk
FFT/)
\end_layout
\begin_layout Plain Layout
add_library(VkFFT INTERFACE)
\end_layout
\begin_layout Plain Layout
target_compile_definitions(VkFFT INTERFACE -DVKFFT_BACKEND=2)
\end_layout
\begin_layout Plain Layout
#target_compile_definitions(${PROJECT_NAME} PUBLIC -DVKFFT_OLD_ROCM) #ROCm
versions before 4.5 needed kernel include of hiprtc
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
target_link_libraries(${PROJECT_NAME} PUBLIC hip::host VkFFT)
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
OpenCL API: OpenCL.
Sample CMakeLists can look like this:
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{cmake}
\end_layout
\begin_layout Plain Layout
find_package(OpenCL REQUIRED)
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
target_include_directories(${PROJECT_NAME} PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/vk
FFT/)
\end_layout
\begin_layout Plain Layout
add_library(VkFFT INTERFACE)
\end_layout
\begin_layout Plain Layout
target_compile_definitions(VkFFT INTERFACE -DVKFFT_BACKEND=3)
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
target_link_libraries(${PROJECT_NAME} PUBLIC OpenCL::OpenCL VkFFT)
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Level Zero API: Level Zero; Clang and llvm-spirv must be in the system path
(for kernel compilation).
Sample CMakeLists can look like this:
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{cmake}
\end_layout
\begin_layout Plain Layout
set(LevelZero_LIBRARY "/usr/lib/x86_64-linux-gnu/")
\end_layout
\begin_layout Plain Layout
set(LevelZero_INCLUDE_DIR "/usr/include/")
\end_layout
\begin_layout Plain Layout
find_library(
\end_layout
\begin_layout Plain Layout
LevelZero_LIB
\end_layout
\begin_layout Plain Layout
NAMES "ze_loader"
\end_layout
\begin_layout Plain Layout
PATHS ${LevelZero_LIBRARY}
\end_layout
\begin_layout Plain Layout
PATH_SUFFIXES "lib" "lib64"
\end_layout
\begin_layout Plain Layout
NO_DEFAULT_PATH
\end_layout
\begin_layout Plain Layout
)
\end_layout
\begin_layout Plain Layout
find_path(
\end_layout
\begin_layout Plain Layout
LevelZero_INCLUDES
\end_layout
\begin_layout Plain Layout
NAMES "ze_api.h"
\end_layout
\begin_layout Plain Layout
PATHS ${LevelZero_INCLUDE_DIR}
\end_layout
\begin_layout Plain Layout
PATH_SUFFIXES "include"
\end_layout
\begin_layout Plain Layout
NO_DEFAULT_PATH
\end_layout
\begin_layout Plain Layout
)
\end_layout
\begin_layout Plain Layout
target_include_directories(${PROJECT_NAME} PUBLIC ${LevelZero_INCLUDES})
\end_layout
\begin_layout Plain Layout
add_library(VkFFT INTERFACE)
\end_layout
\begin_layout Plain Layout
target_compile_definitions(VkFFT INTERFACE -DVKFFT_BACKEND=4)
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
target_link_libraries(${PROJECT_NAME} PUBLIC LevelZero VkFFT)
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\end_deeper
\begin_layout Subsection
Fourier Transform Setup
\end_layout
\begin_layout Standard
VkFFT follows a plan structure like FFTW/cuFFT with a notable difference
- there is a unified interface to all transforms.
This means that there are no separate functions like fftPlan1D/fftPlan2D/fftPla
nMany/etc.
The initialization is done through a single configuration struct - VkFFTConfigu
ration.
Each parameter of it will be covered in detail in this document.
Plans in VkFFT are called VkFFTApplication and they are created with a
unified initializeVkFFT call.
\end_layout
\begin_layout Standard
As the code is written in C, don't forget to zero-initialize used structs!
\end_layout
\begin_layout Standard
During the initializeVkFFT(VkFFTApplication* app, VkFFTConfiguration inputLaunch
Configuration) call VkFFT performs kernel generation and compilation from
scratch (kernel reuse may be added later).
The overall process of initialization looks like this:
\end_layout
\begin_layout Enumerate
Get device parameters, perform default initialization of internal copy of
configuration struct inside the VkFFTApplication, then fill in user-defined
parameters from inputLaunchConfiguration.
\begin_inset space ~
\end_inset
VkFFTApplication is passed as a pointer, so initializeVkFFT modifies the
user-provided application.
\end_layout
\begin_layout Enumerate
By default, there are two internal FFT plans created - inverse and forward.
Multidimensional FFT is done as a combination of 1D FFTs in each axis direction.
For each axis, the VkFFTPlanAxis function is called.
\end_layout
\begin_layout Enumerate
VkFFTPlanAxis configures parameters for each axis.
It may perform additional memory allocations (see: memory allocated by
VkFFT).
\end_layout
\begin_layout Enumerate
shaderGenVkFFT generates corresponding to the axis code in a char buffer
(each axis may require more than one kernel: see Four-step FFT, Bluestein's
algorithm for FFT).
\end_layout
\begin_layout Enumerate
Code is then compiled with the run-time compiler of the specified backend.
\end_layout
\begin_layout Standard
Once the plan is no longer need, a call to the deleteVkFFT function frees
all the allocated resources.
There are no processes launched that continue to work outside of the VkFFT
related function calls.
\end_layout
\begin_layout Subsection
Fourier Transform types and their definitions
\end_layout
\begin_layout Standard
VkFFT supports commonly used Complex to complex (C2C), real to complex (R2C),
complex to real (C2R) transformations and real to real (R2R) Discrete Cosine
Transformations of types II, III and IV.
VkFFT uses the same definitions as FFTW, except for the multidimensional
FFT axis ordering: in FFTW dimensions are ordered with the decrease in
consecutive elements stride, while VkFFT does the opposite - the first
axis is the non-strided axis (the one that has elements located consecutively
in memory with no gaps, usually named as the X-axis).
So, in FFTW dimensions are specified as ZYX and in VkFFT as XYZ.
This felt more logical to me - no matter if there are 1, 2 or 3 dimensions,
the user can always find the axis with the same stride at the same position.
This choice doesn't require any modification in the user's data management
- just provide the FFT dimensions in the reverse order to VkFFT.
\end_layout
\begin_layout Standard
In addition to up to the 3 dimensions of FFT, VkFFT supports two forms of
batching: the number of coordinates and the number of systems.
The choice of two distinct batching ways is made to support matrix-vector
convolutions, where the kernel is presented as a matrix.
Overall, the layout of VkFFT can be described as WHDCN - width, height,
depth, coordinate and number of systems (in order of increasing strides,
starting with 1 for width).
Coordinate and number of systems can be 1, if the user has 1 as one of
the FFT dimensions, the user can omit it from setup altogether as FFT of
size 1 produces the same number as the input.
Often, the coordinate part of the layout is not used, so the main batching
is done by specifying N.
\end_layout
\begin_layout Standard
VkFFT assumes that complex numbers are stored consecutively in memory: RIRIRI...
where R denotes the real part of the complex number and I denotes the imaginary
part.
There is no difference between using a float2/double2/half2 container or
access memory as float/double/half as long as the byte order remains the
same.
\end_layout
\begin_layout Standard
This section and the next one will cover the basics of VkFFT data layouts
and memory management.
\end_layout
\begin_layout Subsubsection
C2C transforms
\end_layout
\begin_layout Standard
The base FFT algorithm - C2C in VkFFT has the same definition as FFTW.
Forward FFT has the exponent sign
\begin_inset Formula $-1$
\end_inset
, while the inverse has the exponent sign
\begin_inset Formula $1$
\end_inset
.
By default, the inverse transform is unnormalized.
\begin_inset Formula $N_{x}N_{y}N_{z}$
\end_inset
complex numbers map to
\begin_inset Formula $N_{x}N_{y}N_{z}$
\end_inset
complex numbers and no additional padding is required.
The resulting data order will be the same as in FFTW/cuFFT, unless special
parameters are provided in configuration (see: advanced memory management)
\end_layout
\begin_layout Subsubsection
R2C/C2R transforms
\end_layout
\begin_layout Standard
R2C/C2R transforms can be explained as C2C transforms with imaginary part
set to zero.
They exploit Hermitian symmetry of the result:
\begin_inset Formula $X_{k}=X_{N-k}^{*}$
\end_inset
on the non-strided axis (the one that has elements located consecutively
in memory with no gaps).
This results in s reduction of required memory to store the complex result
- we may only store
\begin_inset Formula $floor(\frac{N_{x}}{2})+1$
\end_inset
complex numbers instead of
\begin_inset Formula $N_{x}$
\end_inset
.
However, this results in memory requirements mismatch between input and
output in R2C:
\begin_inset Formula $floor(\frac{N_{x}}{2})+1$
\end_inset
complex elements will require
\begin_inset Formula $N_{x}+2$
\end_inset
real numbers worth of memory for even
\begin_inset Formula $N_{x}$
\end_inset
and
\begin_inset Formula $N_{x}+1$
\end_inset
real numbers worth of memory for odd
\begin_inset Formula $N_{x}$
\end_inset
.
For C2R the situation is reversed.
There are two approaches to this problem: pad each sequence of the non-strided
axis with zeros to the required length or use out-of-place mode.
More information on how to do this will be given in the next section.
\end_layout
\begin_layout Subsubsection
R2R (DCT) transforms
\end_layout
\begin_layout Standard
R2R transforms in VkFFT are implemented in the form of Discrete cosine transform
s of types I, II, III and IV.
Their definitions and transforms results match FFTW:
\end_layout
\begin_layout Enumerate
DCT-I:
\begin_inset Formula $X_{k}=x_{0}+(-1)^{k}x_{N-1}+2\stackrel[n=1]{N-2}{\sum}x_{n}cos(\frac{\pi}{N-1}nk)$
\end_inset
, inverse of DCT-I (itself)
\end_layout
\begin_layout Enumerate
DCT-II:
\begin_inset Formula $X_{k}=2\stackrel[n=1]{N-1}{\sum}x_{n}cos(\frac{\pi}{N}(n+\frac{1}{2})k)$
\end_inset
, inverse of DCT-III
\end_layout
\begin_layout Enumerate
DCT-III:
\begin_inset Formula $X_{k}=x_{0}+2\stackrel[n=1]{N-1}{\sum}x_{n}cos(\frac{\pi}{N}n(k+\frac{1}{2}))$
\end_inset
, inverse of DCT-II
\end_layout
\begin_layout Enumerate
DCT-IV:
\begin_inset Formula $X_{k}=2\stackrel[n=0]{N-1}{\sum}x_{n}cos(\frac{\pi}{N}(n+\frac{1}{2})(k+\frac{1}{2}))$
\end_inset
, inverse of DCT-IV (itself)
\end_layout
\begin_layout Standard
R2R transforms are performed by redefinition of them to the C2C transforms
(internal C2C sequence length can be different from the input R2R sequence
length).
R2R transform performs a one-to-one mapping between real numbers, so they
don't require stride management, unlike R2C/C2R.
\end_layout
\begin_layout Subsection
Memory management, data layouts for different transforms
\end_layout
\begin_layout Subsubsection
VkFFT buffers
\end_layout
\begin_layout Standard
VkFFT allows for explicit control over the data flow, which makes both in-place
and out-of-place transforms possible.
Buffers are passed to VkFFT as VkBuffer pointer in Vulkan, as double void
pointers in CUDA/HIP/Level Zero and as cl_mem pointer in OpenCL.
This is done to maintain a uniform data pattern because some of the buffers
can be allocated automatically.
\end_layout
\begin_layout Standard
The main buffer is called buffer and it always has to be provided, either
during the plan creation or when the plan is executed.
All calculations are performed in this buffer and it is always overwritten.
To do calculations out-of-place, VkFFT provides an option to specify inputBuffe
r/outputBuffer buffer.
The logic behind their usage is fairly simple - the user specifies inputBuffer
if the input data has to be read from a buffer, different from the main
buffer.
As the data is read only once and nothing is written back to the inputBuffer,
this allows doing truly out-of-place transformations.
The same logic applies to outputBuffer with the difference that it is responsib
le for the absolute last write of the VkFFT.
It is possible to use all three buffers to create complex data management
paths.
\end_layout
\begin_layout Standard
It must be noted, that sometimes FFT can not be done inside one buffer (see:
Four-Step FFT algorithm, Bluestein's algorithm).
To compute FFT in these cases, there exists tempBuffer buffer and data
is transferred between the main buffer and tempBuffer during the FFT execution.
The ordering of transfers between the main buffer and tempBuffer is done
in such a way, so the initial data read and final data write are obeying
the configuration from the previous paragraph.
Users can allocate tempBuffer themselves of some memory that does not have
any useful information at the time of FFT execution (the tempBuffer size
can depend on the configuration, so this is a rather advanced operation
- read more in the advanced memory management section) or allow VkFFT to
manage tempBuffer allocation itself (tempBuffer will be freed at the deleteVkFF
T call).
\end_layout
\begin_layout Standard
To compute convolutions and cross-correlations, a kernel buffer has to be
specified.
It must have the same layout as the result of the FFT transform.
\end_layout
\begin_layout Subsubsection
VkFFT buffers strides.
A special case of R2C/C2R transforms
\end_layout
\begin_layout Standard
To have better control of memory, the user can specify the strides between
consecutive elements of different axis for H (height), D (depth) and C
(coordinate) parts of the WHDCN layout (W (width) stride is fixed to be
1, N (number of systems) stride will be consecutive of C in memory if C
is used, otherwise N will propagate the previous non-uniform stride multiplied
by the corresponding axis length).
Strides are specified not in bytes, but in the element type used - similar
to the way how the user would access the corresponding element in the array.
If all elements are consecutive in C2C, stride for H will be equal to the
FFT length of W axis, stride for D will be multiplication of first two
FFT axis lengths, stride for C will be multiplication of first three FFT
axis lengths, etc.
These are the default values of C2C and R2R strides if they are not explicitly
specified.
\end_layout
\begin_layout Standard
One of the main use-cases of strides comes to solve the R2C/C2R Hermitian
symmetry H stride mismatch - for real space, it is equal to
\begin_inset Formula $N_{x}$
\end_inset
real elements and for the frequency space it is equal to
\begin_inset Formula $floor(\frac{N_{x}}{2})+1$
\end_inset
complex numbers.
So, with strides it is possible to use a buffer, padded to
\begin_inset Formula $2\cdot(floor(\frac{N_{x}}{2})+1)$
\end_inset
real elements in H stride (all elements between
\begin_inset Formula $N_{x}$
\end_inset
and
\begin_inset Formula $2\cdot(floor(\frac{N_{x}}{2})+1)$
\end_inset
will not be read so it does not matter what data is there before the write
stage).
All other strides are done as a multiplication between the previous stride
and the number of elements in the previous axis.
These are the default values of R2C/C2R strides if they are not explicitly
specified.
\end_layout
\begin_layout Standard
It is possible to specify separate sets of strides for all user-defined
buffers: bufferStride for the main buffer, inputStride for input buffer,
outputStride for output buffer (kernel stride is assumed to be the same
as bufferStride, tempBuffer strides are configured automatically).
\end_layout
\begin_layout Standard
For an out-of-place R2C FFT, there is no need to pad buffer with real numbers,
but user must specify H stride there (as it differs to default one) -
\begin_inset Formula $N_{x}$
\end_inset
real elements for real space and
\begin_inset Formula $floor(\frac{N_{x}}{2})+1$
\end_inset
complex numbers for the frequency space.
\end_layout
\begin_layout Standard
An out-of-place C2R FFT is a more tricky transform.
In the multidimensional case, the main buffer will be written to and read
from multiple times.
The intermediate stores have a complex layout, which requires more space
than the output real layout, so in order not to modify the input data,
there exist two options.
First, pad the real data layout has to
\begin_inset Formula $2\cdot(floor(\frac{N_{x}}{2})+1)$
\end_inset
real elements in H stride (complex buffer will be used as inputBuffer,
real buffer as buffer).
Second, use the third buffer, so both input and output buffers have their
original layouts (complex buffer will be used as inputBuffer, the main
buffer for calculations is buffer and output real buffer as outputBuffer).
If you use inverseReturnToInputBuffer option, where R2C is configured to
read from input buffer and C2R is configured to write to the input buffer;
C2R will modify the buffer it reads from in some cases (see issue
\begin_inset CommandInset href
LatexCommand href
name "#58"
target "https://github.com/DTolm/VkFFT/issues/58#issuecomment-1007205682"
literal "false"
\end_inset
)
\end_layout
\begin_layout Subsection
VkFFT algorithms
\end_layout
\begin_layout Standard
VkFFT implements a wide range of algorithms to compute different types of
FFTs but all of them can be reduced to a mixed-radix Cooley-Tukey FFT algorithm
in the Stockham autosort form.
The main idea behind it is to decompose the sequence as a set of primes,
for each of which FFT can be written down exactly.
As of now, VkFFT has radix implementations for primes up to 13, so all
C2C sequences decomposable into a multiplication of such primes will be
done purely with the Stockham algorithm.
Below additional algorithms and their use-cases are described.
\end_layout
\begin_layout Subsubsection
Bluestein's algorithm
\end_layout
\begin_layout Standard
A complex algorithm that is used in cases where the sequence is not decomposable
with implemented radix butterflies (currently - primes up to 13).
It is derived by replacing
\begin_inset Formula $nk=\left(n^{2}+k^{2}-(n-k)^{2}\right)/2$
\end_inset
in
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:dft"
plural "false"
caps "false"
noprefix "false"
\end_inset
:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align}
X_{k} & =\left(e^{-\pi i\frac{k^{2}}{N}}\right)\stackrel[n=0]{N-1}{\sum}\left(x_{n}e^{-\pi i\frac{n^{2}}{N}}\right)\left(e^{\pi i\frac{\left(k-n\right)^{2}}{N}}\right)=b_{k}^{\ast}\stackrel[n=0]{N-1}{\sum}a_{n}b_{k-n}\label{eq:dft-1}\\
a_{n} & =x_{n}b_{n}^{\ast}\\
b_{n} & =e^{\pi i\frac{n^{2}}{N}}
\end{align}
\end_inset
\end_layout
\begin_layout Standard
Here FFT is represented as a convolution between two sequences:
\begin_inset Formula $a_{n}$
\end_inset
and
\begin_inset Formula $b_{n}$
\end_inset
, which can be performed by the means of convolution theorem:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
F\{a\ast b\}=F\{a\}\cdot F\{b\}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
By padding
\begin_inset Formula $a_{n}$
\end_inset
and
\begin_inset Formula $b_{n}$
\end_inset
to a sequence length decomposable with implemented radix butterflies with
a size of at least
\begin_inset Formula $2N-1$
\end_inset
(because the length of
\begin_inset Formula $b_{n}$
\end_inset
is
\begin_inset Formula $2N-1$
\end_inset
), we can perform FFT of any length.
FFT of
\begin_inset Formula $b_{n}$
\end_inset
can be precomputed, so overall this algorithm requires at least 4x the
computations and more memory transfers.
This algorithm can be combined with all other algorithms implemented in
VkFFT.
If an FFT can not be done in a single upload, a tempBuffer has to be allocated
(because the logical FFT buffer size is bigger than the original system).
\end_layout
\begin_layout Subsubsection
The Four-Step FFT algorithm
\end_layout
\begin_layout Standard
GPUs and CPUs have a hierarchical memory model - the closer memory to the
unit that performs the computations, the faster its speed and the lower
the size.
So it is advantageous to split FFTs, not to the lowest primes, but to some
bigger multiplication of those primes, then upload this subsequence to
the closest cache level to the cores and do the final prime split there.
The absolute lowest level is the register file, however, it does not allow
for thread communications outside the warp.
For this purpose, modern GPUs employ shared memory - a fast memory with
a bank structure that is visible to all threads in a thread block.
The usual sizes of it change on a scale from 16KB to 192KB and it is often
beneficial to use it fully.
However, if the full sequence can not fit inside the shared memory, FFT
has to be done in multiple uploads - with the Four Step FFT algorithm.
The main idea behind it is to represent a big 1D sequence as a 2D (or 3D
for the three-upload scheme) FFT - we first do FFT along the columns, then
the rows, then transpose the result and multiply by a special set of phase
vectors.
Similar decomposition idea as the main Cooley-Tukey algorithm.
However, performing transpositions in-place is a complicated task - especially
for a non-trivial ratio between dimensions.
It will also require an additional read/write stage, as it can not be merged
with the last write of the FFT algorithm.
The easiest and the most performant solution is to use a tempBuffer (it
is the main reason for having this functionality, actually) and store intermedi
ate FFT results out-of-place.
This way the last transposition step can be merged with the write step,
as we can overwrite the output buffer without losing data.
\end_layout
\begin_layout Standard
To estimate if your sequence size is single upload or not, divide the amount
of available shared memory (48KB - Nvidia GPUs with Vulkan/OpenCL API,
64KB - AMD GPUs, 100KB - Nvidia GPUs in CUDA API) by the complex size used
for calculations (8 byte - single precision, 16 byte - double precision).
For 64KB of shared memory, we get 8192 as max single upload single-precision
non-strided FFT, 4096 for double precision.
For strided axes (H and D parts of the layout) these numbers have to be
divided by 4 and 2 respectively to achieve coalescing, resulting in 2048
length for single upload in both precisions.
For more information on coalescing see: coalescing API reference.
\end_layout
\begin_layout Standard
In the case of the Four-Step FFT algorithm, tempBuffer size has to be at
least the same as the default main buffer size.
It does not matter how many uploads are in the Four Step FFT algorithm
- only a single tempBuffer is required.
In this document, all systems that can fit in the shared memory entirely
and be done without the Four Step FFT algorithm (and multiple uploads)
are called single upload systems.
\end_layout
\begin_layout Standard
If the last transposition is not required (the output data is allowed to
be in not unshuffled form) it can be disabled during the configuration
phase.
This way tempBuffer will not be needed and all computations will be done
in-place (unless Bluestein's algorithm is used).
An example use-case of this is convolutions - if the kernel is computed
with the same operation ordering, point-wise multiplication in the frequency
domain is not dependent on the correct data ordering and the inverse FFT
will restore the original layout.
\end_layout
\begin_layout Subsubsection
R2C/C2R FFTs
\end_layout
\begin_layout Standard
A typical approach to a single upload R2C/C2R system is to just set the
imaginary part to zero inside the shared memory and do a simple C2C transform.
This doesn't affect the amount of memory transferred from VRAM and is not
a bad approach as FFT is a memory-bound algorithm, however, this can be
improved in multidimensional (in HDCN part of the layout) case by the compositi
on of a single C2C sequence from two real sequences and some write for R2C/read
for C2R post-processing.
Both of these algorithms are implemented in VkFFT.
Note, that R2C/C2R only affects the non-strided axis (W).
All strided axes are still done as C2C.
\end_layout
\begin_layout Subsubsection
R2C/C2R multi-upload FFT algorithm
\end_layout
\begin_layout Standard
For even sequences there exists an easy mapping between R2C/C2R FFTs and
the C2C of half the size.
In this case, all even indices (starting from 0) are read as the real values
of a complex number and all odd indices are read as the imaginary values.
This C2C sequence can be done with the help of the Four-Step FFT algorithm.
When FFT is done, separate post-processing for R2C/pre-processing for C2R
is applied.
\end_layout
\begin_layout Subsubsection
R2R Discrete Cosine Transforms
\end_layout
\begin_layout Standard
There exist many different mappings between DCT and FFT.
As of now, VkFFT has the following algorithms implemented (all single-upload
for now):
\end_layout
\begin_layout Itemize
DCT-I - mapping between R2R and C2C of the
\begin_inset Formula $2N-2$
\end_inset
length.
For non-strided axis can use an optimization similar to the R2C/C2R multidimens
ional case (setting the imaginary part to the next FFT sequence).
\end_layout
\begin_layout Itemize
DCT-II/DCT-III - mapping between R2R and C2C of the same length.
For non-strided axis can use an optimization similar to the R2C/C2R multidimens
ional case (setting the imaginary part to the next FFT sequence).
\end_layout
\begin_layout Itemize
DCT-IV - for even sizes, mapping between R2R and C2C sequence of half-length.
For odd sizes mapping to the FFT of the same length (for non-strided axis
can use an optimization similar to the R2C/C2R multidimensional case (setting
the imaginary part to the next FFT sequence)).
\end_layout
\begin_layout Subsubsection
Register overutilization
\end_layout
\begin_layout Standard
Not an FFT algorithm by itself, but an optimization to do bigger sequences
in a single upload instead of switching to the Four Step FFT algorithm.
The main idea behind it is to use a register file (which is often bigger
than the amount of shared memory) to store the sequence and use shared
memory only as a communication buffer.
This is useful in Vulkan and OpenCL APIs on Nvidia GPU, as they are only
allowed to allocate 48KB of shared memory with a register file having the
size of 256KB.
\end_layout
\begin_layout Subsubsection
Zero padding
\end_layout
\begin_layout Standard
Not an FFT algorithm by itself, but a memory management optimization.
If the user's system has parts that are known to be zero - for example,
when an open system is modeled, to avoid a circular part of the FFT system
has to be padded with zeros up to 2x in each direction.
VkFFT can omit sequences full of zeros and don't perform the corresponding
memory transfers and computations, as the output result will be zero.
This way it is possible to get up to two times speed increase in the 2D
case and up to 3x increase in the 3D case.
\end_layout
\begin_layout Subsubsection
Convolution and cross-correlation support
\end_layout
\begin_layout Standard
With the help of the Convolution theorem, which states that the Fourier
transform of a convolution is the pointwise product of signals Fourier
transforms, it is possible to perform convolution with
\begin_inset Formula $NlogN$
\end_inset
complexity, compared to
\begin_inset Formula $N^{2}$
\end_inset
complexity of the simple multiplication approach.
This is extremely useful for kernels spanning more than 50 elements in
size.
VkFFT can merge the last step FFT, kernel multiplication in the Fourier
domain and the first step of inverse FFT to provide substantial memory
transfer savings.
Moreover, FFTs of big sequences can be performed without data reordering,
which results in a better locality.
\end_layout
\begin_layout Subsection
VkFFT accuracy
\end_layout
\begin_layout Standard
To measure how VkFFT (single/double/half precision) results compare to cuFFT/roc
FFT (single/double/half precision) and FFTW (double precision), multiple
sets of systems covering full supported C2C/R2C+C2R/R2R FFT range are filled
with random complex data on the scale of [-1,1] and one transform was performed
on each system.
Samples 11(single), 12(double), 13(half), 14(non-power of 2 C2C, single),
15(R2C+C2R, single), 16(DCT-I/II/III/IV, single), 17(DCT-I/II/III/IV, double),
18(non-power of 2 C2C, double) are available in VkFFT Benchmark Suite to
perform VkFFT verification on any of the target platforms.
Overall, the Cooley-Tukey algorithm (Stockham autosort) exhibits logarithmic
relative error scaling, similar to those of other GPU FFT libraries.
Typically, the more computationally expensive algorithm is - the worse
its precision is.
So, Bluestein's algorithm has lower accuracy than Stockham autosort algorithm.
\end_layout
\begin_layout Standard
Single precision in VkFFT supports two modes of calculation - by using the
on-chip Special Function Units that can compute sines and cosines on the
go or by using the precomputed on CPU look-up tables.
For Nvidia and AMD GPUs, SFU provide great precision, while Intel iGPUs
and mobile GPUs must use LUT to perform FFTs correctly.
\end_layout
\begin_layout Standard
Double precision in VkFFT also supports two modes of calculation - by using
polynomial sincos approximation and computing them on-chip or by using
precomputed LUT as well.
The second option is the better one, as polynomial sincos approximation
is too compute-heavy for modern GPUs.
It is selected by default on all devices.
\end_layout
\begin_layout Standard
Half precision is currently only supported in the Vulkan backend and is
often experiencing precision problems with the first number of the resulting
FFT sequence, which is the sum of all input numbers.
Half precision is implemented only as a memory trick - all on-chip computations
are done in single precision, but this doesn't help with the first number
problem.
Half precision can use SFU or LUT as well.
\end_layout
\begin_layout Standard
VkFFT also supports mixed-precision operations, where memory storing is
done at lower precision, compared to the on-chip calculations.
For example, it is possible to read data in single precision, do calculations
in double and store data back in single precision.
\end_layout
\begin_layout Subsection
VkFFT additional memory allocations
\end_layout
\begin_layout Standard
In this section, all GPU memory allocations that are done by VkFFT are described.
There are up to three situations when VkFFT allocates memory.
All of the VkFFT allocated memory is freed at the deleteVkFFT call.
\end_layout
\begin_layout Subsubsection
LUT allocations
\end_layout
\begin_layout Standard
This memory is used to store precomputed twiddle factors and phase vectors
used during the computation.
This buffer can have:
\end_layout
\begin_layout Itemize
twiddle factors for each radix stage of Stockham FFT calculation
\end_layout
\begin_layout Itemize
phase vectors used in the Four Step FFT algorithm between stages
\end_layout
\begin_layout Itemize
phase vectors used in DCT-II/III/IV to perform a mapping between R2R and
C2C
\end_layout
\begin_layout Itemize
phase vectors used in post-processing for R2C/pre-processing for C2R for
even length sequences as C2C of half size
\end_layout
\begin_layout Standard
VkFFT manages LUT allocations by itself and they are performed during the
initializeVkFFT call.
LUT are allocated per axis, though some of them can be reused if the axes
have the same LUT.
Inverse and forward FFT plans share the same LUT (conjugation is performed
on-chip).
\end_layout
\begin_layout Subsubsection
The Four-Step FFT algorithm - tempBuffer allocation
\end_layout
\begin_layout Standard
To perform the merging of the transposition with the last upload of an axis,
VkFFT requires additional memory to mimic an out-of-place execution.
This memory is located in tempBuffer and has to be of at least the same
size as the main buffer.
It is possible for the users to allocate it themselves, though if this
is not done, VkFFT can do the allocation automatically (the size of the
tempBuffer will be the same as the main buffer, unless the logical dimensions
of FFT are bigger than user-defined - then, it will allocate the system
with the minimal size, that can cover maximal logical system size used
in any of the axes - see next subsection).
\end_layout
\begin_layout Subsubsection
Bluestein's buffers allocation
\end_layout
\begin_layout Standard
To do Bluestein's FFT algorithm, precomputed sequences
\begin_inset Formula $b_{n}=e^{\pi i\frac{n^{2}}{N}}$
\end_inset
,
\begin_inset Formula $FFT(b_{n})$
\end_inset
and
\begin_inset Formula $iFFT(b_{n})$
\end_inset
are required.
For each axis, they can be different and are computed separately (unless
VkFFT can determine that they match, then the buffers are allocated only
once).
Notably, as Bluestein's algorithm pads the sequence length to at least
\begin_inset Formula $2N-1$
\end_inset
, if it can not be done in a single upload and the Four Step algorithm has
to be used, the intermediate storage required will be bigger than the main
buffer size.
In this case, tempBuffer must always be allocated.
As the padded sequence can be different for each of the dimensions, the
required size of the tempBuffer will also vary.
VkFFT determines the biggest size needed among axes and allocated tempBuffer
of this size.
\end_layout
\begin_layout Standard
\begin_inset Newpage newpage
\end_inset
\end_layout
\begin_layout Section
VkFFT API Reference
\end_layout
\begin_layout Standard
This section covers error codes, API functions that can be used by the user
and configuration parameters.
\end_layout
\begin_layout Subsection
Return value VkFFTResult
\end_layout
\begin_layout Standard
All VkFFT Library return values except for VKFFT_SUCCESS are used in case
of a failure and provide information on what has gone wrong.
VkFFTResult is unified among different backends, though some of its values
may not be used in specific backends.
Possible return values of VkFFTResult are defined as following:
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{C}
\end_layout
\begin_layout Plain Layout
typedef enum VkFFTResult {
\end_layout
\begin_layout Plain Layout
VKFFT_SUCCESS = 0, // The VkFFT operation was successful
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_MALLOC_FAILED = 1, // Some malloc call inside VkFFT has failed.
Report this to the GitHub repo
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_INSUFFICIENT_CODE_BUFFER = 2, // Generated kernel is bigger
than default kernel array.
Increase it with maxCodeLength parameter of configuration.
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_INSUFFICIENT_TEMP_BUFFER = 3, // Temporary string used in kernel
generation is bigger than default temporary string array.
Increase it with maxTempLength parameter of configuration.
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_PLAN_NOT_INITIALIZED = 4, // Code attempts to use uninitialized
plan (it is zero inside VkFFTApplication)
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_NULL_TEMP_PASSED = 5, // Internal kernel generation error
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_INVALID_PHYSICAL_DEVICE = 1001, // No physical device is provided
(Vulkan API)
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_INVALID_DEVICE = 1002, // No device is provided (All APIs)
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_INVALID_QUEUE = 1003, // No queue is provided (Vulkan API)
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_INVALID_COMMAND_POOL = 1004, // No command pool is provided
(Vulkan API)
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_INVALID_FENCE = 1005, // No fence is provided (Vulkan API)
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_ONLY_FORWARD_FFT_INITIALIZED = 1006, // VkFFT tries to access
inverse FFT plan, when appliction is created with makeForwardPlanOnly flag
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_ONLY_INVERSE_FFT_INITIALIZED = 1007, // VkFFT tries to access
forward FFT plan, when appliction is created with makeInversePlanOnly flag
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_INVALID_CONTEXT = 1008, // No context is provided (OpenCL API)
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_INVALID_PLATFORM = 1009, // No platform is provided (OpenCL
API)
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_EMPTY_FILE = 1011,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_EMPTY_FFTdim = 2001, // Number of dimensions is not provided
in the configuration
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_EMPTY_size = 2002, // Array of dimensions is not provided in
the configuration
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_EMPTY_bufferSize = 2003, // Buffer size has to be provided during
the application creation
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_EMPTY_buffer = 2004, // Buffer has te be specified either at
the application creation stage or during launch through VkFFTLaunchParams
struct
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_EMPTY_tempBufferSize = 2005, // Same error as VKFFT_ERROR_EMPTY_buff
erSize if userTempBuffer is enabled
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_EMPTY_tempBuffer = 2006, // Same error as VKFFT_ERROR_EMPTY_buffer
if userTempBuffer is enabled
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_EMPTY_inputBufferSize = 2007, // Same error as VKFFT_ERROR_EMPTY_buf
ferSize if isInputFormatted is enabled
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_EMPTY_inputBuffer = 2008, // Same error as VKFFT_ERROR_EMPTY_buffer
if isInputFormatted is enabled
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_EMPTY_outputBufferSize = 2009, // Same error as VKFFT_ERROR_EMPTY_bu
fferSize if isOutputFormatted is enabled
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_EMPTY_outputBuffer = 2010, // Same error as VKFFT_ERROR_EMPTY_buffer
if isOutputFormatted is enabled
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_EMPTY_kernelSize = 2011, // Same error as VKFFT_ERROR_EMPTY_bufferSi
ze if performConvolution is enabled
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_EMPTY_kernel = 2012, // Same error as VKFFT_ERROR_EMPTY_buffer
if performConvolution is enabled
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_EMPRY_useCustomBluesteinPaddingPattern_arrays = 2014, // pointers
to primeSizes or paddedSizes arrays are zero when useCustomBluesteinPaddingPatt
ern is enabled
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_UNSUPPORTED_RADIX = 3001, // VkFFT has encountered unsupported
radix (more than 13) during decomposition and Bluestein's FFT fallback
did not work
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_UNSUPPORTED_FFT_LENGTH = 3002, // VkFFT can not do this sequence
length currently - it requires mor than three-upload Four step FFT
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_UNSUPPORTED_FFT_LENGTH_R2C = 3003, // VkFFT can not do this
sequence length currently - odd multi-upload R2C/C2R FFTs
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_UNSUPPORTED_FFT_LENGTH_DCT = 3004, // VkFFT can not do this
sequence length currently - multi-upload R2R transforms, odd DCT-IV transforms
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_UNSUPPORTED_FFT_OMIT = 3005, // VkFFT can not omit sequences
in convolution calculations and R2C/C2R case
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_ALLOCATE = 4001, // VkFFT failed to allocate GPU memory
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_MAP_MEMORY = 4002, // 4002-4052 are handlers for errors
of used backend APIs.
They may indicate a driver failure.
If they are thrown - report to the GitHub repo
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_ALLOCATE_COMMAND_BUFFERS = 4003,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_BEGIN_COMMAND_BUFFER = 4004,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_END_COMMAND_BUFFER = 4005,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_SUBMIT_QUEUE = 4006,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_WAIT_FOR_FENCES = 4007,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_RESET_FENCES = 4008,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_CREATE_DESCRIPTOR_POOL = 4009,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_CREATE_DESCRIPTOR_SET_LAYOUT = 4010,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_ALLOCATE_DESCRIPTOR_SETS = 4011,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_CREATE_PIPELINE_LAYOUT = 4012,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_SHADER_PREPROCESS = 4013,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_SHADER_PARSE = 4014,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_SHADER_LINK = 4015,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_SPIRV_GENERATE = 4016,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_CREATE_SHADER_MODULE = 4017,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_CREATE_INSTANCE = 4018,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_SETUP_DEBUG_MESSENGER = 4019,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_FIND_PHYSICAL_DEVICE = 4020,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_CREATE_DEVICE = 4021,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_CREATE_FENCE = 4022,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_POOL = 4023,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_CREATE_BUFFER = 4024,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_ALLOCATE_MEMORY = 4025,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_BIND_BUFFER_MEMORY = 4026,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_FIND_MEMORY = 4027,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_SYNCHRONIZE = 4028,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_COPY = 4029,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_CREATE_PROGRAM = 4030,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_COMPILE_PROGRAM = 4031,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_GET_CODE_SIZE = 4032,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_GET_CODE = 4033,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_DESTROY_PROGRAM = 4034,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_LOAD_MODULE = 4035,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_GET_FUNCTION = 4036,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_SET_DYNAMIC_SHARED_MEMORY = 4037,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_MODULE_GET_GLOBAL = 4038,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_LAUNCH_KERNEL = 4039,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_EVENT_RECORD = 4040,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_ADD_NAME_EXPRESSION = 4041,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_INITIALIZE = 4042,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_SET_DEVICE_ID = 4043,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_GET_DEVICE = 4044,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_CREATE_CONTEXT = 4045,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_CREATE_PIPELINE = 4046,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_SET_KERNEL_ARG = 4047,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_QUEUE = 4048,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_RELEASE_COMMAND_QUEUE = 4049,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_ENUMERATE_DEVICES = 4050,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_GET_ATTRIBUTE = 4051,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_CREATE_EVENT = 4052,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_LIST = 4053,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_DESTROY_COMMAND_LIST = 4054,
\end_layout
\begin_layout Plain Layout
VKFFT_ERROR_FAILED_TO_SUBMIT_BARRIER = 4055
\end_layout
\begin_layout Plain Layout
} VkFFTResult;
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
VkFFT application management functions
\end_layout
\begin_layout Standard
VkFFT has a unified plan management model - all different transform types/
dimensionalities/ precision use the same calls with configuration done
through VkFFTConfiguration struct.
This section shows how to initialize/use/free VkFFT with this unified model,
while the next one will go into how to configure VkFFTConfiguration correctly.
All of the functions operate on VkFFTApplication and VkFFTConfiguration
assuming they have been zero-initialized before usage, so do not forget
to do this when initializing:
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{C}
\end_layout
\begin_layout Plain Layout
VkFFTConfiguration configuration = {};
\end_layout
\begin_layout Plain Layout
VkFFTApplication app = {};
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection
Function initializeVkFFT()
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{C}
\end_layout
\begin_layout Plain Layout
VkFFTResult initializeVkFFT(VkFFTApplication* app, VkFFTConfiguration inputLaunc
hConfiguration)
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Creates an FFT application (collection of forward and inverse plans).
As forward and inverse FFTs may have different memory layouts, can have
different normalizations - they are done as separate internal plans inside
VkFFTApplication.
This call assumes the application to be zero-initialized, so can be only
done once on a particular application, until it is deleted.
\end_layout
\begin_layout Standard
If the initializeVkFFT call fails, it frees all allocated by VkFFT CPU/GPU
resources and sets the application to zero.
VkFFTResult is returned with an error code corresponding to what went wrong.
\end_layout
\begin_layout Standard
In case of success, VkFFTApplication will contain initialized plans with
compiled kernels ready for execution with VKFFT_SUCCESS returned.
\end_layout
\begin_layout Subsubsection
Function VkFFTAppend()
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{C}
\end_layout
\begin_layout Plain Layout
VkFFTResult VkFFTAppend(VkFFTApplication* app, int inverse, VkFFTLaunchParams*
launchParams)
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Performs FFT in the int inverse direction (-1 for forward FFT, 1 for inverse
FFT).
FFT plans are selected from the VkFFTApplication collection automatically.
VkFFTApplication must be initialized with initializeVkFFT call before.
VkFFTLaunchParams struct allows for pre-launch configuration of some parameters
, namely:
\end_layout
\begin_layout Itemize
buffer - similar to how FFTW/cuFFT expects input/output data pointers in
*execC2C (and other) function calls, VkFFT allows specifying memory used
for computations at launch.
It must have the same size/layout/strides as defined during the application
creation.
\end_layout
\begin_layout Itemize
inputBuffer/outputBuffer/tempBuffer/kernel - other buffers can also be specified
at launch.
In addition to them having the same size/layout/strides as defined during
the application creation, the application must be created with flags enabling
the corresponding buffer usage: isInputFormatted/isOutputFormatted/userTempBuff
er/performConvolution respectively.
\end_layout
\begin_layout Itemize
bufferOffset/tempBufferOffset/inputBufferOffset/outputBufferOffset/kernelOffset
- specify if VkFFT has to offset the first element position inside the
corresponding buffer.
In bytes.
Default 0.
specifyOffsetsAtLaunch parameter must be enabled during the initializeVkFFT
call before.
\end_layout
\begin_layout Standard
Depending on the API, the execution model may vary and require additional
information at launch:
\end_layout
\begin_layout Itemize
Vulkan API: VkFFT appends a sequence of vkCmdDispatch calls to the user-defined
VkCommandBuffer (with respective push constants/descriptor sets/pipelines/memor
y barriers bindings).
VkCommandBuffer must be provided as a pointer in VkFFTLaunchParams.
VkCommandBuffer must be in the writing stage, started with vkBeginCommandBuffer
call.
After VkFFTAppend has finished, provided VkCommandBuffer will contain a
sequence of operations performing FFT.
The first call of the sequence has no input memory barrier, the last call
has one, ensuring FFT has finished execution.
\end_layout
\begin_layout Itemize
CUDA/HIP API: if the user wants to use streams, they have to be provided
during the application configuration stage.
VkFFTAppend performs a series of cuLaunchKernel, which are sequential if
appended to one stream and synchronized if appended to multiple streams.
\end_layout
\begin_layout Itemize
OpenCL API: similar to Vulkan, VkFFT appends a sequence of clEnqueueNDRangeKerne
l calls to user-defined cl_command_queue.
Currently, they are all assumed to be sequential.
cl_command_queue must be provided as a pointer in VkFFTLaunchParams.
\end_layout
\begin_layout Itemize
Level Zero API: similar to Vulkan, VkFFT appends a sequence of zeCommandListAppe
ndLaunchKernel calls to user-defined command list ze_command_list_handle_t.
They have execution barriers between.
ze_command_list_handle_t must be provided as a pointer in VkFFTLaunchParams.
\end_layout
\begin_layout Standard
If VkFFT fails during the VkFFTAppend call, it will not free the application
and allocated there resources - use a separate call for that.
\end_layout
\begin_layout Subsubsection
Function deleteVkFFT()
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{C}
\end_layout
\begin_layout Plain Layout
void deleteVkFFT(VkFFTApplication* app)
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Performs deallocation of resources used in the provided application.
Returns application to the zero-initialized state.
\end_layout
\begin_layout Subsubsection
Function VkFFTGetVersion()
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{C}
\end_layout
\begin_layout Plain Layout
int VkFFTGetVersion()
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Returns the version of the VkFFT library in the X.XX.XX format (without dots).
\end_layout
\begin_layout Subsection
VkFFT configuration
\end_layout
\begin_layout Standard
This section will cover all the parameters that can be specified in the
VkFFTConfiguration struct.
It will start with a short description of the struct (intended to be used
as a cheat sheet), then go for each field in detail.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{C}
\end_layout
\begin_layout Plain Layout
typedef struct {
\end_layout
\begin_layout Plain Layout
// Required parameters:
\end_layout
\begin_layout Plain Layout
uint64_t FFTdim; // FFT dimensionality (1, 2 or 3)
\end_layout
\begin_layout Plain Layout
uint64_t size[3]; // WHD - system dimensions
\end_layout
\begin_layout Plain Layout
#if(VKFFT_BACKEND==0) //Vulkan API
\end_layout
\begin_layout Plain Layout
VkPhysicalDevice* physicalDevice; // Pointer to Vulkan physical device,
obtained from vkEnumeratePhysicalDevices
\end_layout
\begin_layout Plain Layout
VkDevice* device; // Pointer to Vulkan device, created with vkCreateDevice
\end_layout
\begin_layout Plain Layout
VkQueue* queue; // Pointer to Vulkan queue, created with vkGetDeviceQueue
\end_layout
\begin_layout Plain Layout
VkCommandPool* commandPool; // Pointer to Vulkan command pool, created with
vkCreateCommandPool
\end_layout
\begin_layout Plain Layout
VkFence* fence; // Pointer to Vulkan fence, created with vkCreateFence
\end_layout
\begin_layout Plain Layout
uint64_t isCompilerInitialized; // Specify if glslang compiler has been
intialized before (0 - off, 1 - on).
Default 0
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==1) //CUDA API
\end_layout
\begin_layout Plain Layout
CUdevice* device; // Pointer to CUDA device, obtained from cuDeviceGet
\end_layout
\begin_layout Plain Layout
cudaStream_t* stream; // Pointer to streams (can be more than 1), where
to execute the kernels.
Deafult 0
\end_layout
\begin_layout Plain Layout
uint64_t num_streams; // Try to submit CUDA kernels in multiple streams
for asynchronous execution.
Default 1
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==2) //HIP API
\end_layout
\begin_layout Plain Layout
hipDevice_t* device; // Pointer to HIP device, obtained from hipDeviceGet
\end_layout
\begin_layout Plain Layout
hipStream_t* stream; // Pointer to streams (can be more than 1), where to
execute the kernels.
Deafult 0
\end_layout
\begin_layout Plain Layout
uint64_t num_streams; // Try to submit HIP kernels in multiple streams for
asynchronous execution.
Default 1
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==3) //OpenCL API
\end_layout
\begin_layout Plain Layout
cl_platform_id* platform; // NOT REQUIRED
\end_layout
\begin_layout Plain Layout
cl_device_id* device; // Pointer to OpenCL device, obtained from clGetDeviceIDs
\end_layout
\begin_layout Plain Layout
cl_context* context; // Pointer to OpenCL context, obtained from clCreateContext
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==4) //Level Zero API
\end_layout
\begin_layout Plain Layout
ze_device_handle_t* device; // Pointer to Level Zero device, obtained from
zeDeviceGet
\end_layout
\begin_layout Plain Layout
ze_context_handle_t* context; // Pointer to Level Zero context, obtained
from zeContextCreate
\end_layout
\begin_layout Plain Layout
ze_command_queue_handle_t* commandQueue; // Pointer to Level Zero command
queue with compute and copy capabilities, obtained from zeCommandQueueCreate
\end_layout
\begin_layout Plain Layout
uint32_t commandQueueID; // ID of the commandQueue with compute and copy
capabilities
\end_layout
\begin_layout Plain Layout
#endif
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
// Data parameters (buffers can be specified at launch):
\end_layout
\begin_layout Plain Layout
uint64_t userTempBuffer; // Buffer allocated by app automatically if needed
to reorder Four step algorithm.
Setting to non zero value enables manual user allocation (0 - off, 1 -
on)
\end_layout
\begin_layout Plain Layout
uint64_t bufferNum; // Multiple buffer sequence storage is Vulkan only.
Default 1
\end_layout
\begin_layout Plain Layout
uint64_t tempBufferNum; // Multiple buffer sequence storage is Vulkan only.
Default 1, buffer allocated by app automatically if needed to reorder Four
step algorithm.
Setting to non zero value enables manual user allocation
\end_layout
\begin_layout Plain Layout
uint64_t inputBufferNum; // Multiple buffer sequence storage is Vulkan only.
Default 1, if isInputFormatted is enabled
\end_layout
\begin_layout Plain Layout
uint64_t outputBufferNum; // Multiple buffer sequence storage is Vulkan
only.
Default 1, if isOutputFormatted is enabled
\end_layout
\begin_layout Plain Layout
uint64_t kernelNum; // Multiple buffer sequence storage is Vulkan only.
Default 1, if performConvolution is enabled
\end_layout
\begin_layout Plain Layout
uint64_t* bufferSize; // Array of buffers sizes in bytes
\end_layout
\begin_layout Plain Layout
uint64_t* tempBufferSize; // Array of temp buffers sizes in bytes.
Default set to bufferSize sum, buffer allocated by app automatically if
needed to reorder Four step algorithm.
Setting to non zero value enables manual user allocation
\end_layout
\begin_layout Plain Layout
uint64_t* inputBufferSize; // Array of input buffers sizes in bytes, if
isInputFormatted is enabled
\end_layout
\begin_layout Plain Layout
uint64_t* outputBufferSize; // Array of output buffers sizes in bytes, if
isOutputFormatted is enabled
\end_layout
\begin_layout Plain Layout
uint64_t* kernelSize; // Array of kernel buffers sizes in bytes, if performConvo
lution is enabled
\end_layout
\begin_layout Plain Layout
#if(VKFFT_BACKEND==0) //Vulkan API
\end_layout
\begin_layout Plain Layout
VkBuffer* buffer; // Pointer to array of buffers (or one buffer) used for
computations
\end_layout
\begin_layout Plain Layout
VkBuffer* tempBuffer; // Needed if reorderFourStep is enabled to transpose
the array.
Same sum size or bigger as buffer (can be split in multiple).
Default 0.
Setting to non zero value enables manual user allocation
\end_layout
\begin_layout Plain Layout
VkBuffer* inputBuffer; // Pointer to array of input buffers (or one buffer)
used to read data from if isInputFormatted is enabled
\end_layout
\begin_layout Plain Layout
VkBuffer* outputBuffer; // Pointer to array of output buffers (or one buffer)
used to write data to if isOutputFormatted is enabled
\end_layout
\begin_layout Plain Layout
VkBuffer* kernel; // Pointer to array of kernel buffers (or one buffer)
used to read kernel data from if performConvolution is enabled
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==1) //CUDA API
\end_layout
\begin_layout Plain Layout
void** buffer; // Pointer to device buffer used for computations
\end_layout
\begin_layout Plain Layout
void** tempBuffer; // Needed if reorderFourStep is enabled to transpose
the array.
Same size as buffer.
Default 0.
Setting to non zero value enables manual user allocation
\end_layout
\begin_layout Plain Layout
void** inputBuffer; // Pointer to device buffer used to read data from if
isInputFormatted is enabled
\end_layout
\begin_layout Plain Layout
void** outputBuffer; // Pointer to device buffer used to write data to if
isOutputFormatted is enabled
\end_layout
\begin_layout Plain Layout
void** kernel; // Pointer to device buffer used to read kernel data from
if performConvolution is enabled
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==2) //HIP API
\end_layout
\begin_layout Plain Layout
void** buffer; // Pointer to device buffer used for computations
\end_layout
\begin_layout Plain Layout
void** tempBuffer; // Needed if reorderFourStep is enabled to transpose
the array.
Same size as buffer.
Default 0.
Setting to non zero value enables manual user allocation
\end_layout
\begin_layout Plain Layout
void** inputBuffer; // Pointer to device buffer used to read data from if
isInputFormatted is enabled
\end_layout
\begin_layout Plain Layout
void** outputBuffer; // Pointer to device buffer used to write data to if
isOutputFormatted is enabled
\end_layout
\begin_layout Plain Layout
void** kernel; // Pointer to device buffer used to read kernel data from
if performConvolution is enabled
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==3) //OpenCL API
\end_layout
\begin_layout Plain Layout
cl_mem* buffer; // Pointer to device buffer used for computations
\end_layout
\begin_layout Plain Layout
cl_mem* tempBuffer; // Needed if reorderFourStep is enabled to transpose
the array.
Same size as buffer.
Default 0.
Setting to non zero value enables manual user allocation
\end_layout
\begin_layout Plain Layout
cl_mem* inputBuffer; // Pointer to device buffer used to read data from
if isInputFormatted is enabled
\end_layout
\begin_layout Plain Layout
cl_mem* outputBuffer; // Pointer to device buffer used to write data to
if isOutputFormatted is enabled
\end_layout
\begin_layout Plain Layout
cl_mem* kernel; // Pointer to device buffer used to read kernel data from
if performConvolution is enabled
\end_layout
\begin_layout Plain Layout
#endif
\end_layout
\begin_layout Plain Layout
uint64_t bufferOffset; // Specify if VkFFT has to offset the first element
position inside the buffer.
In bytes.
Default 0
\end_layout
\begin_layout Plain Layout
uint64_t tempBufferOffset; // Specify if VkFFT has to offset the first element
position inside the temp buffer.
In bytes.
Default 0
\end_layout
\begin_layout Plain Layout
uint64_t inputBufferOffset; // Specify if VkFFT has to offset the first
element position inside the input buffer.
In bytes.
Default 0
\end_layout
\begin_layout Plain Layout
uint64_t outputBufferOffset; // Specify if VkFFT has to offset the first
element position inside the output buffer.
In bytes.
Default 0
\end_layout
\begin_layout Plain Layout
uint64_t kernelOffset; // Specify if VkFFT has to offset the first element
position inside the kernel.
In bytes.
Default 0
\end_layout
\begin_layout Plain Layout
uint64_t specifyOffsetsAtLaunch; // Specify if offsets will be selected
with launch parameters VkFFTLaunchParams (0 - off, 1 - on).
Default 0
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
// Optional: (default 0 if not stated otherwise)
\end_layout
\begin_layout Plain Layout
uint64_t coalescedMemory; // In bytes, for Nvidia and AMD is equal to 32,
Intel is equal 64, scaled for half precision.
Going to work regardless, but if specified by user correctly, the performance
will be higher.
\end_layout
\begin_layout Plain Layout
uint64_t aimThreads; // Aim at this many threads per block.
Default 128
\end_layout
\begin_layout Plain Layout
uint64_t numSharedBanks; // How many banks shared memory has.
Default 32
\end_layout
\begin_layout Plain Layout
uint64_t inverseReturnToInputBuffer; // return data to the input buffer
in inverse transform (0 - off, 1 - on).
isInputFormatted must be enabled
\end_layout
\begin_layout Plain Layout
uint64_t numberBatches; // N - used to perform multiple batches of initial
data.
Default 1
\end_layout
\begin_layout Plain Layout
uint64_t useUint64; // Use 64-bit addressing mode in generated kernels
\end_layout
\begin_layout Plain Layout
uint64_t omitDimension[3]; // Disable FFT for this dimension (0 - FFT enabled,
1 - FFT disabled).
Default 0.
Doesn't work for R2C for now.
Doesn't work with convolutions.
\end_layout
\begin_layout Plain Layout
uint64_t performBandwidthBoost; // Try to reduce coalsesced number by a
factor of X to get bigger sequence in one upload for strided axes.
Default: -1 for DCT, 2 for Bluestein's algorithm (or -1 if DCT), 0 otherwise
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
uint64_t doublePrecision; // Perform calculations in double precision (0
- off, 1 - on).
\end_layout
\begin_layout Plain Layout
uint64_t halfPrecision; // Perform calculations in half precision (0 - off,
1 - on)
\end_layout
\begin_layout Plain Layout
uint64_t halfPrecisionMemoryOnly; // Use half precision only as input/output
buffer.
Input/Output have to be allocated as half, buffer/tempBuffer have to be
allocated as float (out-of-place mode only).
Specify isInputFormatted and isOutputFormatted to use (0 - off, 1 - on)
\end_layout
\begin_layout Plain Layout
uint64_t doublePrecisionFloatMemory; // Use FP64 precision for all calculations,
while all memory storage is done in FP32.
\end_layout
\begin_layout Plain Layout
uint64_t performR2C; // Perform R2C/C2R decomposition (0 - off, 1 - on)
\end_layout
\begin_layout Plain Layout
uint64_t performDCT; // Perform DCT transformation (X - DCT type, 1-4)
\end_layout
\begin_layout Plain Layout
uint64_t disableMergeSequencesR2C; // Disable merging of two real sequences
to reduce calculations (0 - off, 1 - on)
\end_layout
\begin_layout Plain Layout
uint64_t normalize; // Normalize inverse transform (0 - off, 1 - on)
\end_layout
\begin_layout Plain Layout
uint64_t disableReorderFourStep; // Disables unshuffling of Four step algorithm.
Requires tempbuffer allocation (0 - off, 1 - on)
\end_layout
\begin_layout Plain Layout
uint64_t useLUT; // Switches from calculating sincos to using precomputed
LUT tables (0 - off, 1 - on).
Configured by initialization routine
\end_layout
\begin_layout Plain Layout
uint64_t makeForwardPlanOnly; // Generate code only for forward FFT (0 -
off, 1 - on)
\end_layout
\begin_layout Plain Layout
uint64_t makeInversePlanOnly; // Generate code only for inverse FFT (0 -
off, 1 - on)
\end_layout
\begin_layout Plain Layout
uint64_t bufferStride[3]; // Buffer strides - default set to x - x*y - x*y*z
values
\end_layout
\begin_layout Plain Layout
uint64_t isInputFormatted; // Specify if input buffer is padded - 0 - padded,
1 - not padded.
For example if it is not padded for R2C if out-of-place mode is selected
(only if numberBatches==1 and numberKernels==1)
\end_layout
\begin_layout Plain Layout
uint64_t isOutputFormatted; // Specify if output buffer is padded - 0 -
padded, 1 - not padded.
For example if it is not padded for R2C if out-of-place mode is selected
(only if numberBatches==1 and numberKernels==1)
\end_layout
\begin_layout Plain Layout
uint64_t inputBufferStride[3]; // Input buffer strides.
Used if isInputFormatted is enabled.
Default set to bufferStride values
\end_layout
\begin_layout Plain Layout
uint64_t outputBufferStride[3]; // Output buffer strides.
Used if isInputFormatted is enabled.
Default set to bufferStride values
\end_layout
\begin_layout Plain Layout
uint64_t considerAllAxesStrided; // Will create plan for non-strided axis
similar as a strided axis - used with disableReorderFourStep to get the
same layout for Bluestein kernel (0 - off, 1 - on)
\end_layout
\begin_layout Plain Layout
uint64_t keepShaderCode; // Will keep shader code and print all executed
shaders during the plan execution in order (0 - off, 1 - on)
\end_layout
\begin_layout Plain Layout
uint64_t printMemoryLayout; // Will print order of buffers used in shaders
(0 - off, 1 - on)
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
uint64_t saveApplicationToString; // Will save all compiled binaries to
VkFFTApplication.saveApplicationString (will be allocated by VkFFT, deallocated
with deleteVkFFT call).
VkFFTApplication.applicationStringSize will contain size of binary in bytes.
(0 - off, 1 - on)
\end_layout
\begin_layout Plain Layout
uint64_t loadApplicationFromString; // Will load all binaries from loadApplicati
onString instead of recompiling them (must be allocated by user, must contain
what saveApplicationToString call generated previously in VkFFTApplication.saveA
pplicationString).
(0 - off, 1 - on).
Mutually exclusive with saveApplicationToString
\end_layout
\begin_layout Plain Layout
void* loadApplicationString; // Memory array (uint32_t* for Vulkan/HIP,
char* for CUDA/OpenCL) through which user can load VkFFT binaries, must
be provided by user if loadApplicationFromString = 1.
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
//optional Bluestein optimizations: (default 0 if not stated otherwise)
\end_layout
\begin_layout Plain Layout
uint64_t fixMaxRadixBluestein; // controls the padding of sequences in Bluestein
convolution.
If specified, padded sequence will be made of up to fixMaxRadixBluestein
primes.
Default: 2 for CUDA and Vulkan/OpenCL/HIP up to 1048576 combined dimension
FFT system, 7 for Vulkan/OpenCL/HIP past after.
Min = 2, Max = 13.
\end_layout
\begin_layout Plain Layout
uint64_t forceBluesteinSequenceSize; // force the sequence size to pad to
in Bluestein's algorithm.
Must be at least 2*N-1 and decomposable with primes 2-13.
\end_layout
\begin_layout Plain Layout
uint64_t useCustomBluesteinPaddingPattern; // force the sequence sizes to
pad to in Bluestein's algorithm, but on a range.
This number specifies the number of elements in primeSizes and in paddedSizes
arrays.
primeSizes - array of non-decomposable as radix scheme sizes - 17, 23,
31 etc.
paddedSizes - array of lengths to pad to.
paddedSizes[i] will be the padding size for all non-decomposable sequences
from primeSizes[i] to primeSizes[i+1] (will use default scheme after last
one) - 42, 60, 64 for primeSizes before and 37+ will use default scheme
(for example).
Default is vendor and API-based specified in autoCustomBluesteinPaddingPattern.
\end_layout
\begin_layout Plain Layout
uint64_t* primeSizes; // described in useCustomBluesteinPaddingPattern
\end_layout
\begin_layout Plain Layout
uint64_t* paddedSizes; // described in useCustomBluesteinPaddingPattern
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
// Optional zero padding control parameters: (default 0 if not stated otherwise)
\end_layout
\begin_layout Plain Layout
uint64_t performZeropadding[3]; // Don't read some data/perform computations
if some input sequences are zeropadded for each axis (0 - off, 1 - on)
\end_layout
\begin_layout Plain Layout
uint64_t fft_zeropad_left[3]; // Specify start boundary of zero block in
the system for each axis
\end_layout
\begin_layout Plain Layout
uint64_t fft_zeropad_right[3]; // Specify end boundary of zero block in
the system for each axis
\end_layout
\begin_layout Plain Layout
uint64_t frequencyZeroPadding; // Set to 1 if zeropadding of frequency domain,
default 0 - spatial zeropadding
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
// Optional convolution control parameters: (default 0 if not stated otherwise)
\end_layout
\begin_layout Plain Layout
uint64_t performConvolution; // Perform convolution in this application
(0 - off, 1 - on).
Disables reorderFourStep parameter
\end_layout
\begin_layout Plain Layout
uint64_t coordinateFeatures; // C - coordinate, or dimension of features
vector.
In matrix convolution - size of a vector
\end_layout
\begin_layout Plain Layout
uint64_t matrixConvolution; // If equal to 2 perform 2x2, if equal to 3
perform 3x3 matrix-vector convolution.
Overrides coordinateFeatures
\end_layout
\begin_layout Plain Layout
uint64_t symmetricKernel; // Specify if kernel in 2x2 or 3x3 matrix convolution
is symmetric
\end_layout
\begin_layout Plain Layout
uint64_t numberKernels; // N - only used in convolution step - specify how
many kernels were initialized before.
Expands one input to multiple (batched) output
\end_layout
\begin_layout Plain Layout
uint64_t kernelConvolution; // Specify if this application is used to create
kernel for convolution, so it has the same properties.
performConvolution has to be set to 0 for kernel creation
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
// Register overutilization (experimental): (default 0 if not stated otherwise)
\end_layout
\begin_layout Plain Layout
uint64_t registerBoost; // Specify if register file size is bigger than
shared memory and can be used to extend it X times (on Nvidia 256KB register
file can be used instead of 32KB of shared memory, set this constant to
4 to emulate 128KB of shared memory).
Defaults: Nvidia - 4 in Vulkan/OpenCL, 1 in CUDA backend; AMD - 2 if shared
memory >= 64KB, else 4 in Vulkan/OpenCL backend, 1 in HIP backend; Intel
- 1 if shared memory >= 64KB, else 2 in Vulkan/OpenCL/Level Zero backends;
Default 1
\end_layout
\begin_layout Plain Layout
uint64_t registerBoostNonPow2; // Specify if register overutilization should
be used on non power of 2 sequences (0 - off, 1 - on)
\end_layout
\begin_layout Plain Layout
uint64_t registerBoost4Step; // Specify if register file overutilization
should be used in big sequences (>2^14), same definition as registerBoost.
Default 1
\end_layout
\begin_layout Plain Layout
//not used techniques:
\end_layout
\begin_layout Plain Layout
uint64_t swapTo3Stage4Step; // Specify at which power of 2 to switch from
2 upload to 3 upload 4-step FFT, in case if making max sequence size lower
than coalesced sequence helps to combat TLB misses.
Default 0 - disabled.
Must be at least 17
\end_layout
\begin_layout Plain Layout
uint64_t devicePageSize; // In KB, the size of a page on the GPU.
Setting to 0 disables local buffer split in pages
\end_layout
\begin_layout Plain Layout
uint64_t localPageSize; // In KB, the size to split page into if sequence
spans multiple devicePageSize pages
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
// Automatically filled based on device info (still can be reconfigured
by user):
\end_layout
\begin_layout Plain Layout
uint64_t maxComputeWorkGroupCount[3]; // maxComputeWorkGroupCount from VkPhysica
lDeviceLimits
\end_layout
\begin_layout Plain Layout
uint64_t maxComputeWorkGroupSize[3]; // maxComputeWorkGroupCount from VkPhysical
DeviceLimits
\end_layout
\begin_layout Plain Layout
uint64_t maxThreadsNum; // Max number of threads from VkPhysicalDeviceLimits
\end_layout
\begin_layout Plain Layout
uint64_t sharedMemorySizeStatic; // Available for static allocation shared
memory size, in bytes
\end_layout
\begin_layout Plain Layout
uint64_t sharedMemorySize; // Available for allocation shared memory size,
in bytes
\end_layout
\begin_layout Plain Layout
uint64_t sharedMemorySizePow2; // Power of 2 which is less or equal to sharedMem
orySize, in bytes
\end_layout
\begin_layout Plain Layout
uint64_t warpSize; // Number of threads per warp/wavefront.
\end_layout
\begin_layout Plain Layout
uint64_t halfThreads; // Intel fix
\end_layout
\begin_layout Plain Layout
uint64_t allocateTempBuffer; // Buffer allocated by app automatically if
needed to reorder Four step algorithm.
Parameter to check if it has been allocated
\end_layout
\begin_layout Plain Layout
uint64_t reorderFourStep; // Unshuffle Four step algorithm.
Requires tempbuffer allocation (0 - off, 1 - on).
Default 1.
\end_layout
\begin_layout Plain Layout
int64_t maxCodeLength; // Specify how big can be buffer used for code generation
(in char).
Default 1000000 chars.
\end_layout
\begin_layout Plain Layout
int64_t maxTempLength; // Specify how big can be buffer used for intermediate
string sprintfs be (in char).
Default 5000 chars.
If code segfaults for some reason - try increasing this number.
\end_layout
\begin_layout Plain Layout
uint64_t autoCustomBluesteinPaddingPattern; // default value for useCustomBluest
einPaddingPattern
\end_layout
\begin_layout Plain Layout
uint64_t vendorID; // vendorID 0x10DE - NVIDIA, 0x8086 - Intel, 0x1002 -
AMD, etc
\end_layout
\begin_layout Plain Layout
#if(VKFFT_BACKEND==0) //Vulkan API
\end_layout
\begin_layout Plain Layout
VkDeviceMemory tempBufferDeviceMemory; // Filled at app creation
\end_layout
\begin_layout Plain Layout
VkCommandBuffer* commandBuffer; // Filled at app execution
\end_layout
\begin_layout Plain Layout
VkMemoryBarrier* memory_barrier; // Filled at app creation
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==1) //CUDA API
\end_layout
\begin_layout Plain Layout
cudaEvent_t* stream_event; // Filled at app creation
\end_layout
\begin_layout Plain Layout
uint64_t streamCounter; // Filled at app creation
\end_layout
\begin_layout Plain Layout
uint64_t streamID; // Filled at app creation
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==2) //HIP API
\end_layout
\begin_layout Plain Layout
hipEvent_t* stream_event; // Filled at app creation
\end_layout
\begin_layout Plain Layout
uint64_t streamCounter; // Filled at app creation
\end_layout
\begin_layout Plain Layout
uint64_t streamID; // Filled at app creation
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==3) //OpenCL API
\end_layout
\begin_layout Plain Layout
cl_command_queue* commandQueue; // Filled at app creation
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==4)
\end_layout
\begin_layout Plain Layout
ze_command_list_handle_t* commandList; // Filled at app creation
\end_layout
\begin_layout Plain Layout
#endif
\end_layout
\begin_layout Plain Layout
} VkFFTConfiguration;
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection
Driver API parameters
\end_layout
\begin_layout Standard
In order to work, VkFFT needs some structures that are provided by the driver.
They are backend API-dependent.
VkFFT will return corresponding VkFFTResult if one of these structures
are not provided (value equal to zero) unless it is stated that there is
a default value assigned.
VkFFT will not modify provided values directly.
\end_layout
\begin_layout Standard
Vulkan API will need the following information:
\end_layout
\begin_layout Itemize
VkPhysicalDevice* physicalDevice - Pointer to Vulkan physical device, obtained
from vkEnumeratePhysicalDevices()
\end_layout
\begin_layout Itemize
VkDevice* device - Pointer to Vulkan device, created with vkCreateDevice()
\end_layout
\begin_layout Itemize
VkQueue* queue - Pointer to Vulkan queue, created with vkGetDeviceQueue()
\end_layout
\begin_layout Itemize
VkCommandPool* commandPool - Pointer to Vulkan command pool, created with
vkCreateCommandPool()
\end_layout
\begin_layout Itemize
VkFence* fence - Pointer to Vulkan fence, created with vkCreateFence()
\end_layout
\begin_layout Itemize
uint64_t isCompilerInitialized - Specify if glslang compiler has been intialized
before (0 - off, 1 - on).
Default 0 - VkFFT will call glslang_initialize_process() at initializeVkFFT()
and glslang_finialize_process() at deleteVkFFT() calls.
\end_layout
\begin_layout Standard
CUDA API will need the following information:
\end_layout
\begin_layout Itemize
CUdevice* device - Pointer to CUDA device, obtained from cuDeviceGet()
\end_layout
\begin_layout Itemize
cudaStream_t* stream - Pointer to streams (can be more than 1), where to
execute the kernels.
Default 0.
Streams must be associated with the provided device.
There is no real benefit in having more than one, however.
\end_layout
\begin_layout Itemize
uint64_t num_streams - Try to submit CUDA kernels in multiple streams for
asynchronous execution.
Default 1
\end_layout
\begin_layout Standard
HIP API will need the following information:
\end_layout
\begin_layout Itemize
hipDevice_t* device - Pointer to HIP device, obtained from hipDeviceGet()
\end_layout
\begin_layout Itemize
hipStream_t* stream - Pointer to streams (can be more than 1), where to
execute the kernels.
Default 0.
Streams must be associated with the provided device.
There is no real benefit in having more than one, however.
\end_layout
\begin_layout Itemize
uint64_t num_streams - Try to submit HIP kernels in multiple streams for
asynchronous execution.
Default 1
\end_layout
\begin_layout Standard
OpenCL API will need the following information:
\end_layout
\begin_layout Itemize
cl_device_id* device - Pointer to OpenCL device, obtained from clGetDeviceIDs()
\end_layout
\begin_layout Itemize
cl_context* context - Pointer to OpenCL context, obtained from clCreateContext()
\end_layout
\begin_layout Standard
Level Zero API will need the following information:
\end_layout
\begin_layout Itemize
ze_device_handle_t* device - Pointer to Level Zero device, obtained from
zeDeviceGet()
\end_layout
\begin_layout Itemize
ze_context_handle_t* context - Pointer to Level Zero context, obtained from
zeContextGet()
\end_layout
\begin_layout Itemize
ze_command_queue_handle_t* commandQueue - Pointer to Level Zero command
queuewith compute and copy capabilities, obtained from zeCommandQueueCreate()
\end_layout
\begin_layout Itemize
uint32_t commandQueueID - ID of the commandQueue with compute and copy capabilit
ies
\end_layout
\begin_layout Subsubsection
Memory management parameters
\end_layout
\begin_layout Standard
There are five buffer types user can provide to VkFFT:
\end_layout
\begin_layout Itemize
the main buffer (buffer)
\end_layout
\begin_layout Itemize
temporary buffer used for calculations requiring out-of-place writes (tempBuffer
)
\end_layout
\begin_layout Itemize
separate input buffer, from which initial read is performed (inputBuffer)
\end_layout
\begin_layout Itemize
separate output buffer, to which final write is performed (outputBuffer)
\end_layout
\begin_layout Itemize
kernel buffer, used for calculation of convolutions and cross-correlations
(kernel)
\end_layout
\begin_layout Standard
These buffers must be passed by a pointer: in Vulkan API they are provided
as VkBuffer*, in CUDA, HIP and Level Zero they are provided as void**,
in OpenCL, they are provided as cl_mem*.
Even though the underlying structure (VkBuffer, void*, cl_mem) is not a
memory but just a number that the driver can use to access corresponding
allocated memory on the GPU, passing them by a pointer allows for the user
to query multiple GPU allocated buffers for VkFFT to use.
Currently, it is only supported in Vulkan API - each of five buffer types
can be made out of multiple separate memory allocations.
For example, it is possible to combine multiple small unused at the point
of FFT calculation buffers to form a tempBuffer.
This option also allows Vulkan API to overcome the limit of 4GB for a single
memory allocation - due to the fact that Vulkan can only use 32-bit numbers
for addressing (other APIs support 64-bit addressing).
\end_layout
\begin_layout Standard
To use the buffers other than the main buffer, the user has to specify this
in configuration at the application creation stage (set to zero by default,
optional parameters):
\end_layout
\begin_layout Itemize
uint64_t userTempBuffer - enables manual temporary buffer allocation (otherwise
it is managed by VkFFT)
\end_layout
\begin_layout Itemize
uint64_t isInputFormatted - specifies that initial read is performed from
a separate buffer (inputBuffer)
\end_layout
\begin_layout Itemize
uint64_t isOutputFormatted - specifies that final write is performed to
a separate buffer (outputBuffer)
\end_layout
\begin_layout Itemize
uint64_t performConvolution - enables convolution calculations, which requires
precomputed kernel (kernel)
\end_layout
\begin_layout Standard
Buffer sizes (bufferSize/tempBufferSize/inputBufferSize/outputBufferSize/kernelS
ize) are provided as a uint64_t pointer to an array, where each element
corresponds to the buffer size of the buffer with the same placement in
the buffer array.
Buffer sizes have to be provided in Vulkan API (due to the stricter memory
management model and multiple buffer support) and are optional in other
backends (they can be useful to determine when to switch for 64-bit addressing).
\end_layout
\begin_layout Standard
Buffer number (bufferNum/tempBufferNum/inputBufferNum/outputBufferNum/kernelNum)
corresponds to how many elements are in the buffer and buffer size array.
By default it is set to 1 and is not required to be provided by the user.
Non-Vulkan backends currently don't support values other than default.
Optional parameter.
\end_layout
\begin_layout Standard
Buffer offset (bufferOffset/ tempBufferOffset/ inputBufferOffset/ outputBufferOf
fset/ kernelOffset) specifies offset from the start of the buffer sequence.
It must be specified in bytes and must be divisible by the number type
size used in the corresponding array (otherwise, the offset will be truncated).
It is provided as a single uint64_t value.
Can be provided at launch time, if specifyOffsetsAtLaunch parameter is
enabled during initialization call.
Optional parameters.
\end_layout
\begin_layout Standard
User can provide custom dimension strides for buffer/inputBuffer/outputBuffer
buffers - uint64_t[3] array.
Strides are specified in elements used in the array (not bytes).
The first element corresponds to the stride between elements in the H direction
, the second corresponds to the D direction and the third to C (or N, if
the number of elements in C is 1).
The first axis is assumed to be non-strided.
Must be at least of the same size as default strides, otherwise the behavior
is undefined.
Optional parameters.
\end_layout
\begin_layout Standard
uint64_t inverseReturnToInputBuffer - an option that allows setting the
final output buffer of the inverse transform to the same buffer, initial
read of forward transform is performed from (inputBuffer, if isInputFormatted
enabled).
Optional parameter.
\end_layout
\begin_layout Subsubsection
General FFT parameters
\end_layout
\begin_layout Standard
This section describes part of the configuration structure responsible for
FFT specification.
\end_layout
\begin_layout Standard
uint64_t FFTdim - dimensionality of the transform (1, 2 or 3).
Required parameter.
\end_layout
\begin_layout Standard
uint64_t size[3] - WHD dimensions of the transform.
Required parameter.
\end_layout
\begin_layout Standard
uint64_t numberBatches - N parameter of the transform.
By default, it is set to 1.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t performR2C - perform R2C/C2R decomposition.
performDCT must be set to 0.
Default 0, set to 1 to enable.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t performDCT - perform DCT transformation.
performR2C must be set to 0.
Default 0, set to X for DCT-X (currently supported X: 1, 2, 3 and 4).
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t normalize - enabling this parameter will make the inverse transform
divide the result by the FFT length.
Default 0, set to 1 to enable.
Optional parameter.
\end_layout
\begin_layout Subsubsection
Precision parameters (and some things that can affect it):
\end_layout
\begin_layout Standard
uint64_t doublePrecision - perform calculations in double precision.
Default 0, set to 1 to enable.
In Vulkan/OpenCL/Level Zero your device must support double-precision functiona
lity.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t doublePrecisionFloatMemory - perform calculations in double precision,
but all intermediate and final storage in float.
Input/Output/main buffers must have single-precision layout.
doublePrecision must be set to 0.
This option increases precision, but not that much to be recommended for
actual use.
Default 0, set to 1 to enable.
In Vulkan/OpenCL/Level Zero your device must support double-precision functiona
lity.
Experimental feature.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t halfPrecision - half-precision in VkFFT is implemented only as
memory optimization.
All calculations are done in single precision (similar way as doublePrecisionFl
oatMemory works for double and single precision).
Default 0, set to 1 to enable.
Works only in Vulkan API now, experimental feature (half precision seems
to have bad precision for the first FFT element).
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t halfPrecisionMemoryOnly - another way of performing half-precision
in VkFFT, it will use half-precision only for initial and final memory
storage in input/output buffer.
Input/Output have to be allocated as half, buffer/tempBuffer have to be
allocated as float (out-of-place mode only).
Specify isInputFormatted and isOutputFormatted to use.
So, for example, intermediate storage between axes FFTs in the multidimensional
case will be done in single precision, as opposed to half-precision in
the base halfPrecision case.
halfPrecision must be set to 1.
Default 0, set to 1 to enable.
Works only in Vulkan API now, experimental feature.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t useLUT - switches from calculating sines and cosines (via special
function units in single precision or as a polynomial approximation in
double precision) to using precomputed Look-Up Tables.
Default 0 in single precision, 1 in double precision, set to 1 to enable.
Set to 1 by default for Intel GPUs.
If you have issues with single-precision accuracy on your GPU, try enabling
this parameter (mobile GPUs may be affected).
Optional parameter.
\end_layout
\begin_layout Subsubsection
Advanced parameters (code will work fine without using them)
\end_layout
\begin_layout Standard
uint64_t omitDimension[3] - parameter, that disables the FFT calculation
for a particular axis (WHD).
Note, that omitted dimensions still need to be included in FFTdim and size.
This parameter simply works as a switch during execution - by not executing
the particular dimension code.
It doesn't work with the non-strided axis (W) of R2C/C2R mode.
It doesn't work with convolution calculations.
Default 0, set to 1 to enable.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t useUint64 - forces VkFFT to use 64-bit addressing in generated
kernels.
It is automatically enabled if the estimated buffer size is more than 4GB.
Doesn't work with the Vulkan backend.
By default, it is set to 0.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t coalescedMemory - number of bytes to coalesce per one transaction.
For Nvidia and AMD is equal to 32, Intel is equal to 64.
Going to work regardless, but if specified by the user correctly, the performan
ce will be higher.
Default 64 for other GPUs.
For half-precision should be multiplied by two.
Should be a power of two.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t numSharedBanks - configure the number of shared banks on the target
GPU.
Default 32.
Minor performance boost as it solves shared memory conflicts for the power
of two systems.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t aimThreads - try to aim all kernels at this amount of threads.
Gains/losses are not predictable, just a parameter to play with (it is
not guaranteed that the target kernel will use that many threads).
Default 128.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t useUint64 - forces 64-bit addressing in generated kernels.
Should be enabled automatically for systems spanning more than 4GB, but
it is better to have an option to force it as a failsafe.
Doesn't work in Vulkan API (use multiple buffer binding).
Default 0, set to 1 to enable.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t performBandwidthBoost - try to reduce coalsesced number by a factor
of X to get bigger sequence in one upload for strided axes.
Default: -1(inf) for DCT, 2 for Bluestein's algorithm (or -1 if DCT), 0
otherwise
\end_layout
\begin_layout Standard
uint64_t disableMergeSequencesR2C - disable the optimization that performs
merging of two real sequences to reduce calculations (in R2C/C2R and R2R).
If enabled, calculations will be performed by simply setting the imaginary
component to zero.
Default 0, set to 1 to enable.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t disableReorderFourStep - disables unshuffling of the Four Step
FFT algorithm (last transposition of data).
With this option enabled, tempBuffer will not be needed (unless it is required
by Bluestein's multi-upload FFT algorithm).
Default 0, set to 1 to enable.
Automatically enabled for convolution calculations and Bluestein's algorithm.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t makeForwardPlanOnly - generate code only for forward FFT.
Default 0, set to 1 to enable.
Mutually exclusive with makeInversePlanOnly.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t makeInversePlanOnly - generate code only for inverse FFT.
Default 0, set to 1 to enable.
Mutually exclusive with makeForwardPlan.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t considerAllAxesStrided - will create a plan for a non-strided axis
similar to a strided axis (used with disableReorderFourStep to get the
same layout for Bluestein kernel).
Default 0, set to 1 to enable.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t keepShaderCode - debugging option, will keep shader code and print
all executed shaders during the plan execution in order.
Default 0, set to 1 to enable.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t printMemoryLayout - debugging option, will print order of buffers
used in kernels.
Default 0, set to 1 to enable.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t saveApplicationToString - will save all compiled binaries to VkFFTAppli
cation.saveApplicationString (will be allocated by VkFFT, deallocated with
deleteVkFFT call).
VkFFTApplication.applicationStringSize will contain size of binary in bytes.
Default 0, set to 1 to enable.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t loadApplicationFromString - will load all binaries from loadApplication
String instead of recompiling them (loadApplicationString must be allocated
by user, must contain what saveApplicationToString call generated previously
in VkFFTApplication.saveApplicationString).
Default 0, set to 1 to enable.
Optional parameter.
Mutually exclusive with saveApplicationToString
\end_layout
\begin_layout Standard
void* loadApplicationString - memory array (uint32_t* for Vulkan, HIP and
Level Zero, char* for CUDA/OpenCL) through which user can load VkFFT binaries,
must be provided by user if loadApplicationFromString = 1.
\end_layout
\begin_layout Subsubsection
Bluestein control parameters
\end_layout
\begin_layout Standard
If the sequence can not be decomposed as a multiplication of primes up to
13, FFT is performed as a convolution.
The sequence to pad to with the best performance is usually device-dependent.
VkFFT uses parameters manually tuned for all sequences between 2 and 4096
for both double and single precision on Nvidia A100 (Nvidia profile) and
AMD MI250 (default profile).
To control this process, VkFFT allows for the following parameters specificatio
n:
\end_layout
\begin_layout Standard
uint64_t fixMaxRadixBluestein - controls the padding of sequences in Bluestein
convolution.
If specified, padded sequence will be made of up to fixMaxRadixBluestein
primes.
Default: 2 for CUDA and Vulkan/OpenCL/HIP up to 1048576 combined dimension
FFT system, 7 for Vulkan/OpenCL/HIP past after.
Min = 2, Max = 13.
\end_layout
\begin_layout Standard
uint64_t forceBluesteinSequenceSize - force the sequence size to pad to
in Bluestein's algorithm.
Must be at least 2*N-1 and decomposable with primes 2-13.
\end_layout
\begin_layout Standard
uint64_t useCustomBluesteinPaddingPattern - force the sequence sizes to
pad to in Bluestein's algorithm, but on a range.
This number specifies the number of elements in primeSizes and in paddedSizes
arrays.
primeSizes - array of non-decomposable as radix scheme sizes - 17, 23,
31 etc.
paddedSizes - array of lengths to pad to.
paddedSizes[i] will be the padding size for all non-decomposable sequences
from primeSizes[i] to primeSizes[i+1] (will use default scheme after last
one) - 42, 60, 64 for primeSizes before and 37+ will use default scheme
(for example).
Default is vendor and API-based specified in autoCustomBluesteinPaddingPattern.
\end_layout
\begin_layout Standard
uint64_t* primeSizes - described in useCustomBluesteinPaddingPattern
\end_layout
\begin_layout Standard
uint64_t* paddedSizes - described in useCustomBluesteinPaddingPattern
\end_layout
\begin_layout Subsubsection
Zero padding parameters
\end_layout
\begin_layout Standard
uint64_t performZeropadding[3] - do not read/write some data/perform computation
s if some part of the sequence is known to have zeros.
Set separately for each axis (WHD).
If enabled, all 1D sequences in this direction will be considered padded
(independent of other zero-padded axes).
Default 0, set to 1 to enable.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t fft_zeropad_left[3] - specify start boundary of zero block in the
system for each axis.
Default 0, set to the value between 0 and size[X]-1.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t fft_zeropad_right[3] - specify end boundary of zero block in the
system for each axis.
Default 0, set to the value between fft_zeropad_left[X] and size[X]-1.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t frequencyZeroPadding - enables zero padding of the frequency domain,
so the first read of inverse FFT will consider the parts of the system
from fft_zeropad_left to fft_zeropad_right as zero.
Default 0 - spatial zero padding, set to 1 to enable.
Optional parameter.
\end_layout
\begin_layout Subsubsection
Convolution parameters
\end_layout
\begin_layout Standard
uint64_t performConvolution - main parameter that enables convolutions in
the application.
If enabled, you must specify kernel buffer, number of kernel buffers and
kernel sizes (in Vulkan API).
Disables reordering of the Four Step FFT algorithm.
Default 0, set to 1 to enable.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t conjugateConvolution - default 0, set to 1 to enable enables conjugatio
n of the sequence FFT is currently done on, 2 to enable conjugation of the
convolution kernel.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t crossPowerSpectrumNormalization - normalize the FFT * kernel multiplica
tion in frequency domain.
Default 0, set to 1 to enable.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t coordinateFeatures - max coordinate (C), or dimension of the features
vector.
In matrix convolution - the size of the vector.
The main purpose is to support Matrix-Vector convolutions.
Use numberBatches parameter in tasks, not requiring two separate coordinate-lik
e enumerations of data.
Default 1.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t matrixConvolution - set to 2 to perform 2x2, set to 3 to perform
3x3 matrix-vector convolution.
Matrix-vector convolution is a form of point-wise multiplication in the
Fourier space, used by the convolution theorem, where multiplication takes
the form of Matrix-vector multiplication.
Overrides coordinateFeatures during execution.
Default 0.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t symmetricKernel - specify if kernel in 2x2 or 3x3 matrix convolution
is symmetric.
You need to store data as xx, xy, yy (upper-triangular) if enabled and
as xx, xy, yx, yy (along rows then along columns, from left to right) if
disabled.
Default 0, set to 1 to enable.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t numberKernels - specify how many kernels were initialized before
performing one input/multiple output convolutions.
Overwrites numberBatches (N).
Only used in convolution step and the following inverse transforms.
Default 1.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t kernelConvolution - specify if this application is used to create
kernel for convolution, so it has the same properties/memory layout.
performConvolution has to be set to 0 for the kernel creation.
Default 0, set to 1 to enable.
Optional parameter, but it is a required parameter for kernel generation.
\end_layout
\begin_layout Subsubsection
Register overutilization
\end_layout
\begin_layout Standard
Only works in C2C mode, without convolution support.
Enabled in Vulkan, OpenCL and Level Zero APIs only (it works in other APIs,
but worse).
Experimental feature.
\end_layout
\begin_layout Standard
uint64_t registerBoost - specify if the register file size is bigger than
shared memory and can be used to extend it X times (on Nvidia 256KB register
file can be used instead of 32KB of shared memory, set this constant to
4 to emulate 128KB of shared memory).
Default 1 - no overutilization.
In Vulkan, OpenCL and Level Zero it is set to 4 on Nvidia GPUs, to 2 if
the driver shows 64KB or more of shared memory on AMD, to 2 if the driver
shows less than 64KB of shared memory on AMD, to 1 if the driver shows
64KB or more of shared memory on Intel, to 2 if the driver shows less than
64KB of shared memory on Intel.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t registerBoostNonPow2 - specify if register overutilization should
be used on non-power of 2 sequences.
Default 0, set to 1 to enable.
Optional parameter.
\end_layout
\begin_layout Standard
uint64_t registerBoost4Step - specify if register file overutilization should
be used in big sequences (>2^14), same definition as registerBoost.
Default 1.
Optional parameter.
\end_layout
\begin_layout Subsubsection
Extra advanced parameters (filled automatically)
\end_layout
\begin_layout Standard
uint64_t maxComputeWorkGroupCount[3] - how many workgroups can be launched
at one dispatch.
Automatically derived from the driver, can be artificially lowered.
Then VkFFT will perform a logical split and extension of the number of
workgroups to cover the required range.
\end_layout
\begin_layout Standard
uint64_t maxComputeWorkGroupSize[3] - max dimensions of the workgroup.
Automatically derived from the driver.
Can be modified if there are some issues with the driver (as there were
with ROCm 4.0, when it returned 1024 for maxComputeWorkGroupSize and actually
supported only up to 256 threads).
\end_layout
\begin_layout Standard
uint64_t maxThreadsNum - max number of threads per block.
Similar to maxComputeWorkGroupSize, but aggregated.
Automatically derived from the driver.
\end_layout
\begin_layout Standard
uint64_t sharedMemorySizeStatic - available for static allocation shared
memory size, in bytes.
Automatically derived from the driver.
Can be controlled by the user, if desired.
\end_layout
\begin_layout Standard
uint64_t sharedMemorySize - available for allocation shared memory size,
in bytes.
VkFFT uses dynamic shared memory in CUDA/HIP as it allows for bigger allocation
s.
Automatically derived from the driver.
Can be controlled by the user, if desired.
\end_layout
\begin_layout Standard
uint64_t sharedMemorySizePow2 - the power of 2 which is less or equal to
sharedMemorySize, in bytes.
Automatically computed.
\end_layout
\begin_layout Standard
uint64_t warpSize - number of threads per warp/wavefront.
Automatically derived from the driver, but can be modified (can increase
performance, though unpredictable as defaults have good values).
Must be a power of two.
\end_layout
\begin_layout Standard
uint64_t halfThreads - Intel GPU fix, tries to reduce the amount of dispatched
threads in half to solve performance degradation in the Four Step FFT algorithm.
Default 0 for other GPUs, try enabling it if performance degrades in the
Four Step FFT algorithm for your GPU as well.
\end_layout
\begin_layout Standard
int64_t maxCodeLength - specify how big can the buffer used for code generation
be (in char).
Default 1000000 chars.
\end_layout
\begin_layout Standard
int64_t maxTempLength - specify how big can the buffer used for intermediate
string sprintf's be (in char).
Default 5000 chars.
If code segfaults for some reason - try increasing this number.
\end_layout
\begin_layout Standard
uint64_t autoCustomBluesteinPaddingPattern; // default value for useCustomBluest
einPaddingPattern
\end_layout
\begin_layout Standard
uint64_t vendorID; // vendorID 0x10DE - NVIDIA, 0x8086 - Intel, 0x1002 -
AMD, etc.
\end_layout
\begin_layout Standard
\begin_inset Newpage newpage
\end_inset
\end_layout
\begin_layout Section
VkFFT Benchmark/Precision Suite and utils_VkFFT helper routines
\end_layout
\begin_layout Standard
The only licensed (MIT) part of the VkFFT repository is the VkFFT header
file - core library.
Other files are either external helper libraries (half, glslang, with their
respective licenses) or unlicensed code that is intended for simple copy-pastin
g (benchmark_scripts, utils_VkFFT.h).
It is the easiest way to understand how to use VkFFT by taking the provided
scripts and tinker them to the particular task.
The current version of the benchmark and precision verification suite has
the following codes available:
\end_layout
\begin_layout Itemize
user_benchmark_VkFFT - generalization of the main configuration parameters
that can be used to launch simplest in-place transforms for the most important
supported functionality
\end_layout
\begin_layout Itemize
Sample 0 - FFT + iFFT C2C benchmark 1D batched in single precision
\end_layout
\begin_layout Itemize
Sample 1 - FFT + iFFT C2C benchmark 1D batched in double precision
\end_layout
\begin_layout Itemize
Sample 2 - FFT + iFFT C2C benchmark 1D batched in half precision
\end_layout
\begin_layout Itemize
Sample 3 - FFT + iFFT C2C multidimensional benchmark in single precision
\end_layout
\begin_layout Itemize
Sample 4 - FFT + iFFT C2C multidimensional benchmark in single precision,
native zeropadding
\end_layout
\begin_layout Itemize
Sample 5 - FFT + iFFT C2C benchmark 1D batched in single precision, no reshuffli
ng
\end_layout
\begin_layout Itemize
Sample 6 - FFT + iFFT R2C / C2R benchmark, in-place.
\end_layout
\begin_layout Itemize
Sample 7 - FFT + iFFT C2C Bluestein benchmark in single precision
\end_layout
\begin_layout Itemize
Sample 8 - FFT + iFFT C2C Bluestein benchmark in double precision
\end_layout
\begin_layout Itemize
Sample 10 - multiple buffers (4 by default) split version of benchmark 0
\end_layout
\begin_layout Itemize
Sample 11 - VkFFT / xFFT / FFTW C2C precision test in single precision (xFFT
can be cuFFT or rocFFT)
\end_layout
\begin_layout Itemize
Sample 12 - VkFFT / xFFT / FFTW C2C precision test in double precision (xFFT
can be cuFFT or rocFFT)
\end_layout
\begin_layout Itemize
Sample 13 - VkFFT / cuFFT / FFTW C2C precision test in half precision
\end_layout
\begin_layout Itemize
Sample 14 - VkFFT / FFTW C2C radix 3 / 5 / 7 / 11 / 13 / Bluestein precision
test in single precision
\end_layout
\begin_layout Itemize
Sample 15 - VkFFT / xFFT / FFTW R2C+C2R precision test in single precision,
out-of-place.
(xFFT can be cuFFT or rocFFT)
\end_layout
\begin_layout Itemize
Sample 16 - VkFFT / FFTW R2R DCT-I, II, III and IV precision test in single
precision
\end_layout
\begin_layout Itemize
Sample 17 - VkFFT / FFTW R2R DCT-I, II, III and IV precision test in double
precision
\end_layout
\begin_layout Itemize
Sample 18 - VkFFT / FFTW C2C radix 3 / 5 / 7 / 11 / 13 / Bluestein precision
test in double precision
\end_layout
\begin_layout Itemize
Sample 50 - convolution example with identity kernel
\end_layout
\begin_layout Itemize
Sample 51 - zero padding convolution example with identity kernel
\end_layout
\begin_layout Itemize
Sample 52 - batched convolution example with identity kernel
\end_layout
\begin_layout Itemize
Sample 100 - VkFFT FFT + iFFT R2R DCT multidimensional benchmark in single
precision
\end_layout
\begin_layout Itemize
Sample 101 - VkFFT FFT + iFFT R2R DCT multidimensional benchmark in double
precision
\end_layout
\begin_layout Itemize
Sample 1000 - FFT + iFFT C2C benchmark 1D batched in single precision: all
supported systems from 2 to 4096
\end_layout
\begin_layout Itemize
Sample 1001 - FFT + iFFT C2C benchmark 1D batched in single precision: all
supported systems from 2 to 4096
\end_layout
\begin_layout Itemize
Sample 1003 - FFT + iFFT C2C benchmark 1D batched in single precision: all
supported systems from 2 to 4096
\end_layout
\begin_layout Subsection
utils_VkFFT helper routines
\end_layout
\begin_layout Standard
Launching even the simplest Vulkan application can be a non-trivial task.
To help with this, utils_VkFFT contains the routines that can help to create
the simplest Vulkan application, allocate memory, record command buffers
and launch them.
Code has some comments explaining what is going on at each step.
It also has some useful struct defines (like vkGPU) that keep the most
important handles used in Vulkan Compute.
This section may be expanded in the future to the proper step-by-step guide
on Vulkan Compute simple application creation.
I also encourage to check https://github.com/DTolm/VulkanComputeSamples-Transpos
ition repository for another example of a compute algorithm (matrix transpositio
n) implemented with Vulkan API.
\end_layout
\begin_layout Standard
utils_VkFFT also has a routine that prints the list of available devices.
\end_layout
\begin_layout Standard
vkGPU struct has the following definition:
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{C}
\end_layout
\begin_layout Plain Layout
typedef struct {
\end_layout
\begin_layout Plain Layout
#if(VKFFT_BACKEND==0) //Vulkan API
\end_layout
\begin_layout Plain Layout
VkInstance instance; //a connection between the application and the Vulkan
library
\end_layout
\begin_layout Plain Layout
VkPhysicalDevice physicalDevice; //a handle for the graphics card used in
the application
\end_layout
\begin_layout Plain Layout
VkPhysicalDeviceProperties physicalDeviceProperties; //bastic device properties
\end_layout
\begin_layout Plain Layout
VkPhysicalDeviceMemoryProperties physicalDeviceMemoryProperties; //basic
memory properties of the device
\end_layout
\begin_layout Plain Layout
VkDevice device; //a logical device, interacting with physical device
\end_layout
\begin_layout Plain Layout
VkDebugUtilsMessengerEXT debugMessenger; //extension for debugging
\end_layout
\begin_layout Plain Layout
uint64_t queueFamilyIndex; //if multiple queues are available, specify the
used one
\end_layout
\begin_layout Plain Layout
VkQueue queue; //a place, where all operations are submitted
\end_layout
\begin_layout Plain Layout
VkCommandPool commandPool; //an opaque objects that command buffer memory
is allocated from
\end_layout
\begin_layout Plain Layout
VkFence fence; //a vkGPU->fence used to synchronize dispatches
\end_layout
\begin_layout Plain Layout
std::vector<const char*> enabledDeviceExtensions;
\end_layout
\begin_layout Plain Layout
uint64_t enableValidationLayers;
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==1) //CUDA API
\end_layout
\begin_layout Plain Layout
CUdevice device;
\end_layout
\begin_layout Plain Layout
CUcontext context;
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==2) //HIP API
\end_layout
\begin_layout Plain Layout
hipDevice_t device;
\end_layout
\begin_layout Plain Layout
hipCtx_t context;
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==3) //OpenCL API
\end_layout
\begin_layout Plain Layout
cl_platform_id platform;
\end_layout
\begin_layout Plain Layout
cl_device_id device;
\end_layout
\begin_layout Plain Layout
cl_context context;
\end_layout
\begin_layout Plain Layout
cl_command_queue commandQueue;
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==4) //Level Zero API
\end_layout
\begin_layout Plain Layout
ze_driver_handle_t driver;
\end_layout
\begin_layout Plain Layout
ze_device_handle_t device;
\end_layout
\begin_layout Plain Layout
ze_context_handle_t context;
\end_layout
\begin_layout Plain Layout
ze_command_queue_handle_t commandQueue;
\end_layout
\begin_layout Plain Layout
uint32_t commandQueueID;
\end_layout
\begin_layout Plain Layout
#endif
\end_layout
\begin_layout Plain Layout
uint64_t device_id; //an id of a device, reported by devices_list call
\end_layout
\begin_layout Plain Layout
} VkGPU;
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\begin_inset Newpage newpage
\end_inset
\end_layout
\begin_layout Section
VkFFT Code Examples
\end_layout
\begin_layout Standard
This section will provide some simple pseudocode for VkFFT usage, which
will once again outline important steps required to launch FFT with VkFFT.
More information (and fully working code) can be found in this folder of
the VkFFT repository:
\end_layout
\begin_layout Standard
/benchmark_samples/vkFFT_scripts/src/
\end_layout
\begin_layout Subsection
Driver initializations
\end_layout
\begin_layout Standard
Before launching VkFFT, do not forget to do all necessary driver initializations.
The following code specifies them for all the supported backends, though
the final implementation may be different depending on the particular user's
configuration.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{C}
\end_layout
\begin_layout Plain Layout
#if(VKFFT_BACKEND==0) //Vulkan API
\end_layout
\begin_layout Plain Layout
VkResult res = VK_SUCCESS;
\end_layout
\begin_layout Plain Layout
//create instance - a connection between the application and the Vulkan
library
\end_layout
\begin_layout Plain Layout
res = createInstance(vkGPU, sample_id);
\end_layout
\begin_layout Plain Layout
if (res != 0) {
\end_layout
\begin_layout Plain Layout
//printf("Instance creation failed, error code: %" PRIu64 "
\backslash
n", res);
\end_layout
\begin_layout Plain Layout
return VKFFT_ERROR_FAILED_TO_CREATE_INSTANCE;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
//set up the debugging messenger
\end_layout
\begin_layout Plain Layout
res = setupDebugMessenger(vkGPU);
\end_layout
\begin_layout Plain Layout
if (res != 0) {
\end_layout
\begin_layout Plain Layout
//printf("Debug messenger creation failed, error code: %" PRIu64 "
\backslash
n", res);
\end_layout
\begin_layout Plain Layout
return VKFFT_ERROR_FAILED_TO_SETUP_DEBUG_MESSENGER;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
//check if there are GPUs that support Vulkan and select one
\end_layout
\begin_layout Plain Layout
res = findPhysicalDevice(vkGPU);
\end_layout
\begin_layout Plain Layout
if (res != 0) {
\end_layout
\begin_layout Plain Layout
//printf("Physical device not found, error code: %" PRIu64 "
\backslash
n", res);
\end_layout
\begin_layout Plain Layout
return VKFFT_ERROR_FAILED_TO_FIND_PHYSICAL_DEVICE;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
//create logical device representation
\end_layout
\begin_layout Plain Layout
res = createDevice(vkGPU, sample_id);
\end_layout
\begin_layout Plain Layout
if (res != 0) {
\end_layout
\begin_layout Plain Layout
//printf("Device creation failed, error code: %" PRIu64 "
\backslash
n", res);
\end_layout
\begin_layout Plain Layout
return VKFFT_ERROR_FAILED_TO_CREATE_DEVICE;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
//create fence for synchronization
\end_layout
\begin_layout Plain Layout
res = createFence(vkGPU);
\end_layout
\begin_layout Plain Layout
if (res != 0) {
\end_layout
\begin_layout Plain Layout
//printf("Fence creation failed, error code: %" PRIu64 "
\backslash
n", res);
\end_layout
\begin_layout Plain Layout
return VKFFT_ERROR_FAILED_TO_CREATE_FENCE;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
//create a place, command buffer memory is allocated from
\end_layout
\begin_layout Plain Layout
res = createCommandPool(vkGPU);
\end_layout
\begin_layout Plain Layout
if (res != 0) {
\end_layout
\begin_layout Plain Layout
//printf("Fence creation failed, error code: %" PRIu64 "
\backslash
n", res);
\end_layout
\begin_layout Plain Layout
return VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_POOL;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
vkGetPhysicalDeviceProperties(vkGPU->physicalDevice, &vkGPU->physicalDevicePrope
rties);
\end_layout
\begin_layout Plain Layout
vkGetPhysicalDeviceMemoryProperties(vkGPU->physicalDevice, &vkGPU->physicalDevic
eMemoryProperties);
\end_layout
\begin_layout Plain Layout
glslang_initialize_process();
\end_layout
\begin_layout Plain Layout
//compiler can be initialized before VkFFT
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==1) //CUDA API
\end_layout
\begin_layout Plain Layout
CUresult res = CUDA_SUCCESS;
\end_layout
\begin_layout Plain Layout
cudaError_t res2 = cudaSuccess;
\end_layout
\begin_layout Plain Layout
res = cuInit(0);
\end_layout
\begin_layout Plain Layout
if (res != CUDA_SUCCESS) return VKFFT_ERROR_FAILED_TO_INITIALIZE;
\end_layout
\begin_layout Plain Layout
res2 = cudaSetDevice((int)vkGPU->device_id);
\end_layout
\begin_layout Plain Layout
if (res2 != cudaSuccess) return VKFFT_ERROR_FAILED_TO_SET_DEVICE_ID;
\end_layout
\begin_layout Plain Layout
res = cuDeviceGet(&vkGPU->device, (int)vkGPU->device_id);
\end_layout
\begin_layout Plain Layout
if (res != CUDA_SUCCESS) return VKFFT_ERROR_FAILED_TO_GET_DEVICE;
\end_layout
\begin_layout Plain Layout
res = cuCtxCreate(&vkGPU->context, 0, (int)vkGPU->device);
\end_layout
\begin_layout Plain Layout
if (res != CUDA_SUCCESS) return VKFFT_ERROR_FAILED_TO_CREATE_CONTEXT;
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==2) //HIP API
\end_layout
\begin_layout Plain Layout
hipError_t res = hipSuccess;
\end_layout
\begin_layout Plain Layout
res = hipInit(0);
\end_layout
\begin_layout Plain Layout
if (res != hipSuccess) return VKFFT_ERROR_FAILED_TO_INITIALIZE;
\end_layout
\begin_layout Plain Layout
res = hipSetDevice((int)vkGPU->device_id);
\end_layout
\begin_layout Plain Layout
if (res != hipSuccess) return VKFFT_ERROR_FAILED_TO_SET_DEVICE_ID;
\end_layout
\begin_layout Plain Layout
res = hipDeviceGet(&vkGPU->device, (int)vkGPU->device_id);
\end_layout
\begin_layout Plain Layout
if (res != hipSuccess) return VKFFT_ERROR_FAILED_TO_GET_DEVICE;
\end_layout
\begin_layout Plain Layout
res = hipCtxCreate(&vkGPU->context, 0, (int)vkGPU->device);
\end_layout
\begin_layout Plain Layout
if (res != hipSuccess) return VKFFT_ERROR_FAILED_TO_CREATE_CONTEXT;
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==3) //OpenCL API
\end_layout
\begin_layout Plain Layout
cl_int res = CL_SUCCESS;
\end_layout
\begin_layout Plain Layout
cl_uint numPlatforms;
\end_layout
\begin_layout Plain Layout
res = clGetPlatformIDs(0, 0, &numPlatforms);
\end_layout
\begin_layout Plain Layout
if (res != CL_SUCCESS) return VKFFT_ERROR_FAILED_TO_INITIALIZE;
\end_layout
\begin_layout Plain Layout
cl_platform_id* platforms = (cl_platform_id*)malloc(sizeof(cl_platform_id)
* numPlatforms);
\end_layout
\begin_layout Plain Layout
if (!platforms) return VKFFT_ERROR_MALLOC_FAILED;
\end_layout
\begin_layout Plain Layout
res = clGetPlatformIDs(numPlatforms, platforms, 0);
\end_layout
\begin_layout Plain Layout
if (res != CL_SUCCESS) return VKFFT_ERROR_FAILED_TO_INITIALIZE;
\end_layout
\begin_layout Plain Layout
uint64_t k = 0;
\end_layout
\begin_layout Plain Layout
for (uint64_t j = 0; j < numPlatforms; j++) {
\end_layout
\begin_layout Plain Layout
cl_uint numDevices;
\end_layout
\begin_layout Plain Layout
res = clGetDeviceIDs(platforms[j], CL_DEVICE_TYPE_ALL, 0, 0, &numDevices);
\end_layout
\begin_layout Plain Layout
cl_device_id* deviceList = (cl_device_id*)malloc(sizeof(cl_device_id) *
numDevices);
\end_layout
\begin_layout Plain Layout
if (!deviceList) return VKFFT_ERROR_MALLOC_FAILED;
\end_layout
\begin_layout Plain Layout
res = clGetDeviceIDs(platforms[j], CL_DEVICE_TYPE_ALL, numDevices, deviceList,
0);
\end_layout
\begin_layout Plain Layout
if (res != CL_SUCCESS) return VKFFT_ERROR_FAILED_TO_GET_DEVICE;
\end_layout
\begin_layout Plain Layout
for (uint64_t i = 0; i < numDevices; i++) {
\end_layout
\begin_layout Plain Layout
if (k == vkGPU->device_id) {
\end_layout
\begin_layout Plain Layout
vkGPU->platform = platforms[j];
\end_layout
\begin_layout Plain Layout
vkGPU->device = deviceList[i];
\end_layout
\begin_layout Plain Layout
vkGPU->context = clCreateContext(NULL, 1, &vkGPU->device, NULL, NULL,
&res);
\end_layout
\begin_layout Plain Layout
if (res != CL_SUCCESS) return VKFFT_ERROR_FAILED_TO_CREATE_CONTEXT;
\end_layout
\begin_layout Plain Layout
cl_command_queue commandQueue = clCreateCommandQueue(vkGPU->context,
vkGPU->device, 0, &res);
\end_layout
\begin_layout Plain Layout
if (res != CL_SUCCESS) return VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_QUEUE;
\end_layout
\begin_layout Plain Layout
vkGPU->commandQueue = commandQueue;
\end_layout
\begin_layout Plain Layout
k++;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
else {
\end_layout
\begin_layout Plain Layout
k++;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
free(deviceList);
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
free(platforms);
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==4)
\end_layout
\begin_layout Plain Layout
ze_result_t res = ZE_RESULT_SUCCESS;
\end_layout
\begin_layout Plain Layout
res = zeInit(0);
\end_layout
\begin_layout Plain Layout
if (res != ZE_RESULT_SUCCESS) return VKFFT_ERROR_FAILED_TO_INITIALIZE;
\end_layout
\begin_layout Plain Layout
uint32_t numDrivers = 0;
\end_layout
\begin_layout Plain Layout
res = zeDriverGet(&numDrivers, 0);
\end_layout
\begin_layout Plain Layout
if (res != ZE_RESULT_SUCCESS) return VKFFT_ERROR_FAILED_TO_INITIALIZE;
\end_layout
\begin_layout Plain Layout
ze_driver_handle_t* drivers = (ze_driver_handle_t*)malloc(numDrivers *
sizeof(ze_driver_handle_t));
\end_layout
\begin_layout Plain Layout
if (!drivers) return VKFFT_ERROR_MALLOC_FAILED;
\end_layout
\begin_layout Plain Layout
res = zeDriverGet(&numDrivers, drivers);
\end_layout
\begin_layout Plain Layout
if (res != ZE_RESULT_SUCCESS) return VKFFT_ERROR_FAILED_TO_INITIALIZE;
\end_layout
\begin_layout Plain Layout
uint64_t k = 0;
\end_layout
\begin_layout Plain Layout
for (uint64_t j = 0; j < numDrivers; j++) {
\end_layout
\begin_layout Plain Layout
uint32_t numDevices = 0;
\end_layout
\begin_layout Plain Layout
res = zeDeviceGet(drivers[j], &numDevices, nullptr);
\end_layout
\begin_layout Plain Layout
if (res != ZE_RESULT_SUCCESS) return VKFFT_ERROR_FAILED_TO_GET_DEVICE;
\end_layout
\begin_layout Plain Layout
ze_device_handle_t* deviceList = (ze_device_handle_t*)malloc(numDevices
* sizeof(ze_device_handle_t));
\end_layout
\begin_layout Plain Layout
if (!deviceList) return VKFFT_ERROR_MALLOC_FAILED;
\end_layout
\begin_layout Plain Layout
res = zeDeviceGet(drivers[j], &numDevices, deviceList);
\end_layout
\begin_layout Plain Layout
if (res != ZE_RESULT_SUCCESS) return VKFFT_ERROR_FAILED_TO_GET_DEVICE;
\end_layout
\begin_layout Plain Layout
for (uint64_t i = 0; i < numDevices; i++) {
\end_layout
\begin_layout Plain Layout
if (k == vkGPU->device_id) {
\end_layout
\begin_layout Plain Layout
vkGPU->driver = drivers[j];
\end_layout
\begin_layout Plain Layout
vkGPU->device = deviceList[i];
\end_layout
\begin_layout Plain Layout
ze_context_desc_t contextDescription = {};
\end_layout
\begin_layout Plain Layout
contextDescription.stype = ZE_STRUCTURE_TYPE_CONTEXT_DESC;
\end_layout
\begin_layout Plain Layout
res = zeContextCreate(vkGPU->driver, &contextDescription, &vkGPU->context);
\end_layout
\begin_layout Plain Layout
if (res != ZE_RESULT_SUCCESS) return VKFFT_ERROR_FAILED_TO_CREATE_CONTEXT;
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
uint32_t queueGroupCount = 0;
\end_layout
\begin_layout Plain Layout
res = zeDeviceGetCommandQueueGroupProperties(vkGPU->device, &queueGroupCount
, 0);
\end_layout
\begin_layout Plain Layout
if (res != ZE_RESULT_SUCCESS) return VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_QU
EUE;
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
ze_command_queue_group_properties_t* cmdqueueGroupProperties = (ze_command_q
ueue_group_properties_t*) malloc(queueGroupCount * sizeof(ze_command_queue_group
_properties_t));
\end_layout
\begin_layout Plain Layout
if (!cmdqueueGroupProperties) return VKFFT_ERROR_MALLOC_FAILED;
\end_layout
\begin_layout Plain Layout
res = zeDeviceGetCommandQueueGroupProperties(vkGPU->device, &queueGroupCount
, cmdqueueGroupProperties);
\end_layout
\begin_layout Plain Layout
if (res != ZE_RESULT_SUCCESS) return VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_QU
EUE;
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
uint32_t commandQueueID = -1;
\end_layout
\begin_layout Plain Layout
for (uint32_t i = 0; i < queueGroupCount; ++i) {
\end_layout
\begin_layout Plain Layout
if ((cmdqueueGroupProperties[i].flags && ZE_COMMAND_QUEUE_GROUP_PROPERTY_FLA
G_COMPUTE) && (cmdqueueGroupProperties[i].flags && ZE_COMMAND_QUEUE_GROUP_PROPERT
Y_FLAG_COPY)) {
\end_layout
\begin_layout Plain Layout
commandQueueID = i;
\end_layout
\begin_layout Plain Layout
break;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
if (commandQueueID == -1) return VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_QUEUE;
\end_layout
\begin_layout Plain Layout
vkGPU->commandQueueID = commandQueueID;
\end_layout
\begin_layout Plain Layout
ze_command_queue_desc_t commandQueueDescription = {};
\end_layout
\begin_layout Plain Layout
commandQueueDescription.stype = ZE_STRUCTURE_TYPE_COMMAND_QUEUE_DESC;
\end_layout
\begin_layout Plain Layout
commandQueueDescription.ordinal = commandQueueID;
\end_layout
\begin_layout Plain Layout
commandQueueDescription.priority = ZE_COMMAND_QUEUE_PRIORITY_NORMAL;
\end_layout
\begin_layout Plain Layout
commandQueueDescription.mode = ZE_COMMAND_QUEUE_MODE_DEFAULT;
\end_layout
\begin_layout Plain Layout
res = zeCommandQueueCreate(vkGPU->context, vkGPU->device, &commandQueueDescr
iption, &vkGPU->commandQueue);
\end_layout
\begin_layout Plain Layout
if (res != ZE_RESULT_SUCCESS) return VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_QU
EUE;
\end_layout
\begin_layout Plain Layout
free(cmdqueueGroupProperties);
\end_layout
\begin_layout Plain Layout
k++;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
else {
\end_layout
\begin_layout Plain Layout
k++;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
free(deviceList);
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
free(drivers);
\end_layout
\begin_layout Plain Layout
#endif
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Simple FFT application example: 1D (one dimensional) C2C (complex to complex)
FP32 (single precision) FFT
\end_layout
\begin_layout Standard
This example performs the simplest case of FFT.
It shows all the necessary fields that the user must fill during the configurat
ion and the submission process.
Other samples will build on this one, as driver parameters initialization
and code execution commands are the same for all configurations (except
for the launch parameters that can be configured after application creation).
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{C}
\end_layout
\begin_layout Plain Layout
//zero-initialize configuration + FFT application
\end_layout
\begin_layout Plain Layout
VkFFTConfiguration configuration = {};
\end_layout
\begin_layout Plain Layout
VkFFTApplication app = {};
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
configuration.FFTdim = 1; //FFT dimension, 1D, 2D or 3D
\end_layout
\begin_layout Plain Layout
configuration.size[0] = Nx; //FFT size
\end_layout
\begin_layout Plain Layout
uint64_t bufferSize = (uint64_t)sizeof(float) * 2 * configuration.size[0];
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
//Device management + code submission
\end_layout
\begin_layout Plain Layout
configuration.device = &vkGPU->device;
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
#if(VKFFT_BACKEND==0) //Vulkan API
\end_layout
\begin_layout Plain Layout
configuration.queue = &vkGPU->queue;
\end_layout
\begin_layout Plain Layout
configuration.fence = &vkGPU->fence;
\end_layout
\begin_layout Plain Layout
configuration.commandPool = &vkGPU->commandPool;
\end_layout
\begin_layout Plain Layout
configuration.physicalDevice = &vkGPU->physicalDevice;
\end_layout
\begin_layout Plain Layout
configuration.isCompilerInitialized = isCompilerInitialized; //glslang compiler
can be initialized before VkFFT plan creation.
if not, VkFFT will create and destroy one after initialization
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==3) //OpenCL API
\end_layout
\begin_layout Plain Layout
configuration.context = &vkGPU->context;
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==4)
\end_layout
\begin_layout Plain Layout
configuration.context = &vkGPU->context;
\end_layout
\begin_layout Plain Layout
configuration.commandQueue = &vkGPU->commandQueue;
\end_layout
\begin_layout Plain Layout
configuration.commandQueueID = vkGPU->commandQueueID;
\end_layout
\begin_layout Plain Layout
#endif
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
allocateBuffer(buffer, bufferSize); //Pseudocode for buffer allocation,
differs between APIs
\end_layout
\begin_layout Plain Layout
transferDataFromCPU(buffer, cpu_buffer); //Pseudocode for data transfer
from CPU to GPU, differs between APIs
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
#if(VKFFT_BACKEND==0) //Vulkan API needs bufferSize at initialization
\end_layout
\begin_layout Plain Layout
configuration.bufferSize = &bufferSize;
\end_layout
\begin_layout Plain Layout
#endif
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
VkFFTResult resFFT = initializeVkFFT(&app, configuration);
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
VkFFTLaunchParams launchParams = {};
\end_layout
\begin_layout Plain Layout
launchParams.buffer = &buffer;
\end_layout
\begin_layout Plain Layout
#if(VKFFT_BACKEND==0) //Vulkan API
\end_layout
\begin_layout Plain Layout
launchParams.commandBuffer = &commandBuffer;
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==3) //OpenCL API
\end_layout
\begin_layout Plain Layout
launchParams.commandQueue = &commandQueue;
\end_layout
\begin_layout Plain Layout
#elif(VKFFT_BACKEND==4) //Level Zero API
\end_layout
\begin_layout Plain Layout
launchParams->commandList = &commandList;
\end_layout
\begin_layout Plain Layout
#endif
\end_layout
\begin_layout Plain Layout
resFFT = VkFFTAppend(app, -1, &launchParams);
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
//add synchronization relevant to your API - vkWaitForFences/cudaDeviceSynchroni
ze/hipDeviceSynchronize/clFinish
\end_layout
\begin_layout Plain Layout
transferDataToCPU(cpu_buffer, buffer); //Pseudocode for data transfer from
GPU to CPU, differs between APIs
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
freeBuffer(buffer, bufferSize); //Pseudocode for buffer deallocation, differs
between APIs
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
deleteVkFFT(&app);
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Advanced FFT application example: ND, C2C/R2C/R2R, different precisions,
batched FFT
\end_layout
\begin_layout Standard
This example shows how to configure the main parameters of interest in the
VkFFT library: multidimensional case, different types of transforms, different
precision, perform batched transforms.
\end_layout
\begin_layout Standard
In the code below X, Y and Z are the dimensions of FFT, B - number of batches,
R2C - real to complex mode 0 or 1 (on/off), DCT - 0, 1, 2, 3 or 4 (off/DCT
type), P - precision (0 - single, 1 - double, 2 - half).
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{C}
\end_layout
\begin_layout Plain Layout
//zero-initialize configuration + FFT application
\end_layout
\begin_layout Plain Layout
VkFFTConfiguration configuration = {};
\end_layout
\begin_layout Plain Layout
VkFFTApplication app = {};
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
configuration.FFTdim = 1; //FFT dimension, 1D, 2D or 3D
\end_layout
\begin_layout Plain Layout
configuration.size[0] = X;
\end_layout
\begin_layout Plain Layout
configuration.size[1] = Y;
\end_layout
\begin_layout Plain Layout
configuration.size[2] = Z;
\end_layout
\begin_layout Plain Layout
if (Y > 1) configuration.FFTdim++;
\end_layout
\begin_layout Plain Layout
if (Z > 1) configuration.FFTdim++;
\end_layout
\begin_layout Plain Layout
configuration.numberBatches = B;
\end_layout
\begin_layout Plain Layout
configuration.performR2C = R2C;
\end_layout
\begin_layout Plain Layout
configuration.performDCT = DCT;
\end_layout
\begin_layout Plain Layout
if (P == 1) configuration.doublePrecision = 1;
\end_layout
\begin_layout Plain Layout
if (P == 2) configuration.halfPrecision = 1;
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
uint64_t bufferSize = 0;
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
if (R2C) {
\end_layout
\begin_layout Plain Layout
bufferSize = (uint64_t)(storageComplexSize / 2) * (configuration.size[0]
+ 2) * configuration.size[1] * configuration.size[2] * configuration.numberBatches
;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
else {
\end_layout
\begin_layout Plain Layout
if (DCT) {
\end_layout
\begin_layout Plain Layout
bufferSize = (uint64_t)(storageComplexSize / 2) * configuration.size[0]
* configuration.size[1] * configuration.size[2] * configuration.numberBatches;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
else {
\end_layout
\begin_layout Plain Layout
bufferSize = (uint64_t)storageComplexSize * configuration.size[0] * configurati
on.size[1] * configuration.size[2] * configuration.numberBatches;
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
} // storageComplexSize - 4/8/16 for FP16/FP32/FP64 respectively.
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
//Device management + code submission - code is identical to the previous
example
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Advanced FFT application example: out-of-place R2C FFT with custom strides
\end_layout
\begin_layout Standard
In this example, VkFFT is configured to calculate a 3D out-of-place R2C
FFT of a system with custom strides.
VkFFT reads data from the inputBuffer and produces the result in the buffer.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{C}
\end_layout
\begin_layout Plain Layout
//zero-initialize configuration + FFT application
\end_layout
\begin_layout Plain Layout
VkFFTConfiguration configuration = {};
\end_layout
\begin_layout Plain Layout
VkFFTApplication app = {};
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
configuration.FFTdim = 3; //FFT dimension, 1D, 2D or 3D
\end_layout
\begin_layout Plain Layout
configuration.size[0] = Nx;
\end_layout
\begin_layout Plain Layout
configuration.size[1] = Ny;
\end_layout
\begin_layout Plain Layout
configuration.size[2] = Nz;
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
configuration.performR2C = 1;
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
//out-of-place - we need to specify that input buffer is separate from the
main buffer
\end_layout
\begin_layout Plain Layout
configuration.isInputFormatted = 1;
\end_layout
\begin_layout Plain Layout
configuration.inputBufferStride[0] = configuration.size[0];
\end_layout
\begin_layout Plain Layout
configuration.inputBufferStride[1] = configuration.inputBufferStride[0] *
configuration.size[1];
\end_layout
\begin_layout Plain Layout
configuration.inputBufferStride[2] = configuration.inputBufferStride[1] *
configuration.size[2];
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
configuration.bufferStride[0] = (uint64_t) (configuration.size[0] / 2) + 1;
\end_layout
\begin_layout Plain Layout
configuration.bufferStride[1] = configuration.bufferStride[0] * configuration.size[
1];
\end_layout
\begin_layout Plain Layout
configuration.bufferStride[2] = configuration.bufferStride[1]* configuration.size[2
];
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
uint64_t inputBufferSize = (uint64_t)sizeof(float) * configuration.size[0]
* configuration.size[1] * configuration.size[2];
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
uint64_t bufferSize = (uint64_t)sizeof(float) * 2 * (configuration.size[0]/2+1)
* configuration.size[1] * configuration.size[2];
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
//Device management + code submission - code is identical to the first example,
except that you need to allocate two buffers (and provide them in the launch
configuration).
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Advanced FFT application example: 3D zero-padded FFT
\end_layout
\begin_layout Standard
In this example, VkFFT is configured to calculate a 3D FFT of a system.
The meaningful data is located in the first octant of the buffer, the rest
is padded with zeros.
This configuration removes the circular part of the convolution and allows
modelling of open systems.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{C}
\end_layout
\begin_layout Plain Layout
//zero-initialize configuration + FFT application
\end_layout
\begin_layout Plain Layout
VkFFTConfiguration configuration = {};
\end_layout
\begin_layout Plain Layout
VkFFTApplication app = {};
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
configuration.FFTdim = 3; //FFT dimension, 1D, 2D or 3D
\end_layout
\begin_layout Plain Layout
configuration.size[0] = Nx;
\end_layout
\begin_layout Plain Layout
configuration.size[1] = Ny;
\end_layout
\begin_layout Plain Layout
configuration.size[2] = Nz;
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
configuration.performZeropadding[0] = 1; //Perform padding with zeros on
GPU.
Still need to properly align input data (no need to fill padding area with
meaningful data) but this will increase performance due to the lower amount
of the memory reads/writes and omitting sequences only consisting of zeros.
\end_layout
\begin_layout Plain Layout
configuration.performZeropadding[1] = 1;
\end_layout
\begin_layout Plain Layout
configuration.performZeropadding[2] = 1;
\end_layout
\begin_layout Plain Layout
configuration.fft_zeropad_left[0] = (uint64_t)ceil(configuration.size[0] /
2.0);
\end_layout
\begin_layout Plain Layout
configuration.fft_zeropad_right[0] = configuration.size[0];
\end_layout
\begin_layout Plain Layout
configuration.fft_zeropad_left[1] = (uint64_t)ceil(configuration.size[1] /
2.0);
\end_layout
\begin_layout Plain Layout
configuration.fft_zeropad_right[1] = configuration.size[1];
\end_layout
\begin_layout Plain Layout
configuration.fft_zeropad_left[2] = (uint64_t)ceil(configuration.size[2] /
2.0);
\end_layout
\begin_layout Plain Layout
configuration.fft_zeropad_right[2] = configuration.size[2];
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
uint64_t bufferSize = (uint64_t)storageComplexSize * configuration.size[0]
* configuration.size[1] * configuration.size[2];
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
//Device management + code submission - code is identical to the first example
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Convolution application example: 3x3 matrix-vector convolution in 1D
\end_layout
\begin_layout Standard
In this example, VkFFT is configured to calculate a kernel, represented
by a 3x3 matrix and a system, represented by a 3D vector.
Their convolution is a matrix-vector multiplication in the frequency domain.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{C}
\end_layout
\begin_layout Plain Layout
//zero-initialize configuration + FFT application, we need two - one for
kernel calculation
\end_layout
\begin_layout Plain Layout
VkFFTConfiguration kernel_configuration = {};
\end_layout
\begin_layout Plain Layout
VkFFTConfiguration convolution_configuration = {};
\end_layout
\begin_layout Plain Layout
VkFFTApplication app_kernel = {};
\end_layout
\begin_layout Plain Layout
VkFFTApplication app_convolution = {};
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
kernel_configuration.FFTdim = 1; //FFT dimension, 1D, 2D or 3D
\end_layout
\begin_layout Plain Layout
kernel_configuration.size[0] = Nx; //FFT size
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
uint64_t bufferSize = (uint64_t)sizeof(float) * 2 * kernel_configuration.size[0];
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
//configure kernel
\end_layout
\begin_layout Plain Layout
kernel_configuration.kernelConvolution = 1; //specify if this plan is used
to create kernel for convolution
\end_layout
\begin_layout Plain Layout
kernel_configuration.coordinateFeatures = 9; //Specify dimensionality of
the input feature vector (default 1).
Each component is stored not as a vector, but as a separate system and
padded on it's own according to other options (i.e.
for x*y system of 3-vector, first x*y elements correspond to the first
dimension, then goes x*y for the second, etc).
\end_layout
\begin_layout Plain Layout
//coordinateFeatures number is an important constant for convolution.
If we perform 1x1 convolution, it is equal to number of features, but matrixCon
volution should be equal to 1.
For matrix convolution, it must be equal to matrixConvolution parameter.
If we perform 2x2 convolution, it is equal to 3 for symmetric kernel (stored
as xx, xy, yy) and 4 for nonsymmetric (stored as xx, xy, yx, yy).
Similarly, 6 (stored as xx, xy, xz, yy, yz, zz) and 9 (stored as xx, xy,
xz, yx, yy, yz, zx, zy, zz) for 3x3 convolutions.
\end_layout
\begin_layout Plain Layout
kernel_configuration.normalize = 1;
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
//Initialize app_kernel and perform a single forward FFT like in examples
before.
You pass kernel as a buffer for the preparation stage.
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
convolution_configuration = kernel_configuration;
\end_layout
\begin_layout Plain Layout
convolution_configuration.kernelConvolution = 0;
\end_layout
\begin_layout Plain Layout
convolution_configuration.performConvolution = 1;
\end_layout
\begin_layout Plain Layout
convolution_configuration.symmetricKernel = 0;//Specify if convolution kernel
is symmetric.
In this case we only pass upper triangle part of it in the form of: (xx,
xy, yy) for 2d and (xx, xy, xz, yy, yz, zz) for 3d.
\end_layout
\begin_layout Plain Layout
convolution_configuration.matrixConvolution = 3;//we do matrix convolution,
so kernel is 9 numbers (3x3), but vector dimension is 3
\end_layout
\begin_layout Plain Layout
convolution_configuration.coordinateFeatures = 3;//equal to matrixConvolution
size
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
//Initialize app_convolution and perform a single forward FFT like in examples
before.
You pass kernel as kernel and system to be convolved with it as buffer
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Convolution application example: R2C cross-correlation between two sets
of N images
\end_layout
\begin_layout Standard
In this example, VkFFT is configured to calculate a kernel, represented
by three 2D vectors (RGB values of a pixel) and a system, also represented
by three 2D vectors.
There are N kernels and N systems.
Their cross-correlation is a conjugate convolution in the frequency domain.
Images are usually stored as real, not complex numbers, so code uses R2C
optimization as well.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{C}
\end_layout
\begin_layout Plain Layout
//zero-initialize configuration + FFT application, we need two - one for
kernel calculation
\end_layout
\begin_layout Plain Layout
VkFFTConfiguration kernel_configuration = {};
\end_layout
\begin_layout Plain Layout
VkFFTConfiguration convolution_configuration = {};
\end_layout
\begin_layout Plain Layout
VkFFTApplication app_kernel = {};
\end_layout
\begin_layout Plain Layout
VkFFTApplication app_convolution = {};
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
kernel_configuration.FFTdim = 2; //FFT dimension, 1D, 2D or 3D
\end_layout
\begin_layout Plain Layout
kernel_configuration.size[0] = Nx;
\end_layout
\begin_layout Plain Layout
kernel_configuration.size[1] = Ny;
\end_layout
\begin_layout Plain Layout
kernel_configuration.coordinateFeatures = 3;
\end_layout
\begin_layout Plain Layout
kernel_configuration.numberBatches = N;
\end_layout
\begin_layout Plain Layout
kernel_configuration.performR2C = 1;
\end_layout
\begin_layout Plain Layout
kernel_configuration.normalize = 1;
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
uint64_t bufferSize = (uint64_t)sizeof(float) * 2 * (kernel_configuration.size[0]
/2+1) * kernel_configuration.size[1] * kernel_configuration.coordinateFeatures
* kernel_configuration.numberBatches;
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
kernel_configuration.kernelConvolution = 1; //specify if this plan is used
to create kernel for convolution
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
//Initialize app_kernel and perform a single forward FFT like in examples
before.
Pad in-place R2C system like this:
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
for (uint64_t n = 0; n < kernel_configuration.numberBatches; n++) {
\end_layout
\begin_layout Plain Layout
for (uint64_t c = 0; c < kernel_configuration.coordinateFeatures; c++) {
\end_layout
\begin_layout Plain Layout
for (uint64_t j = 0; j < kernel_configuration.size[1]; j++) {
\end_layout
\begin_layout Plain Layout
for (uint64_t i = 0; i < kernel_configuration.size[0]; i++) {
\end_layout
\begin_layout Plain Layout
kernel_padded_GPU[i + j * 2 * (kernel_configuration.size[0]/2 + 1) +
c * 2 * (kernel_configuration.size[0]/2 + 1) * kernel_configuration.size[1]
+ n * 2 * (kernel_configuration.size[0]/2 + 1) * kernel_configuration.size[1]
* kernel_configuration.coordinateFeatures] = kernel_input[i + j * kernel_configu
ration.size[0] + c * kernel_configuration.size[0] * kernel_configuration.size[1]
+ n * kernel_configuration.size[0] * kernel_configuration.size[1] * kernel_config
uration.coordinateFeatures];
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
convolution_configuration = kernel_configuration;
\end_layout
\begin_layout Plain Layout
convolution_configuration.kernelConvolution = 0;
\end_layout
\begin_layout Plain Layout
convolution_configuration.performConvolution = 1;
\end_layout
\begin_layout Plain Layout
convolution_configuration.conjugateConvolution = 1;
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
//Initialize app_convolution and perform a single forward FFT like in examples
before.
Pad the system in the same way as the kernel
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Simple FFT application binary reuse application
\end_layout
\begin_layout Standard
This example shows how to save/load binaries generated by VkFFT.
This can reduce time taken by initializeVkFFT call by removing RTC components
from it.
Be sure that rest of the configuration stays the same to reuse the binary.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{mdframed}[backgroundcolor=bg]
\end_layout
\begin_layout Plain Layout
\backslash
begin{minted}[tabsize=4,obeytabs,breaklines]{C}
\end_layout
\begin_layout Plain Layout
VkFFTConfiguration configuration = {};
\end_layout
\begin_layout Plain Layout
VkFFTApplication app = {};
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
//configuration is initialized like in other examples
\end_layout
\begin_layout Plain Layout
configuration.saveApplicationToString = 1;
\end_layout
\begin_layout Plain Layout
//configuration.loadApplicationFromString = 1; //choose one to save/load
binary file
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
if (configuration.loadApplicationFromString) {
\end_layout
\begin_layout Plain Layout
FILE* kernelCache;
\end_layout
\begin_layout Plain Layout
uint64_t str_len;
\end_layout
\begin_layout Plain Layout
#if((VKFFT_BACKEND==0) || (VKFFT_BACKEND==2) || (VKFFT_BACKEND==4))
\end_layout
\begin_layout Plain Layout
kernelCache = fopen("VkFFT_binary", "rb"); //Vulkan and HIP backends load
data as a uint32_t sequence
\end_layout
\begin_layout Plain Layout
#else
\end_layout
\begin_layout Plain Layout
kernelCache = fopen("VkFFT_binary", "r");
\end_layout
\begin_layout Plain Layout
#endif
\end_layout
\begin_layout Plain Layout
fseek(kernelCache, 0, SEEK_END);
\end_layout
\begin_layout Plain Layout
str_len = ftell(kernelCache);
\end_layout
\begin_layout Plain Layout
fseek(kernelCache, 0, SEEK_SET);
\end_layout
\begin_layout Plain Layout
configuration.loadApplicationString = malloc(str_len);
\end_layout
\begin_layout Plain Layout
fread(configuration.loadApplicationString, str_len, 1, kernelCache);
\end_layout
\begin_layout Plain Layout
fclose(kernelCache);
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
resFFT = initializeVkFFT(&app, configuration);
\end_layout
\begin_layout Plain Layout
if (resFFT != VKFFT_SUCCESS) return resFFT;
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
if (configuration.loadApplicationFromString)
\end_layout
\begin_layout Plain Layout
free(configuration.loadApplicationString);
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
if (configuration.saveApplicationToString) {
\end_layout
\begin_layout Plain Layout
FILE* kernelCache;
\end_layout
\begin_layout Plain Layout
#if((VKFFT_BACKEND==0) || (VKFFT_BACKEND==2) || (VKFFT_BACKEND==4))
\end_layout
\begin_layout Plain Layout
kernelCache = fopen("VkFFT_binary", "wb"); //Vulkan and HIP backends save
data as a uint32_t sequence
\end_layout
\begin_layout Plain Layout
#else
\end_layout
\begin_layout Plain Layout
kernelCache = fopen("VkFFT_binary", "w");
\end_layout
\begin_layout Plain Layout
#endif
\end_layout
\begin_layout Plain Layout
fwrite(app.saveApplicationString, app.applicationStringSize, 1, kernelCache);
\end_layout
\begin_layout Plain Layout
fclose(kernelCache);
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
//application is launched like in other examples
\end_layout
\begin_layout Plain Layout
\backslash
end{minted}
\end_layout
\begin_layout Plain Layout
\backslash
end{mdframed}
\end_layout
\end_inset
\end_layout
\end_body
\end_document
|