1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
/*****************************************************************************
* fft.c: Iterative implementation of a FFT
*****************************************************************************
* $Id: 2151e9be79b9600f0c983117ad7bd64eb5ef6e83 $
*
* Mainly taken from XMMS's code
*
* Authors: Richard Boulton <richard@tartarus.org>
* Ralph Loader <suckfish@ihug.co.nz>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA.
*****************************************************************************/
#include <stdlib.h>
#include "fft.h"
#include <math.h>
#ifndef PI
#ifdef M_PI
#define PI M_PI
#else
#define PI 3.14159265358979323846 /* pi */
#endif
#endif
/******************************************************************************
* Local prototypes
*****************************************************************************/
static void fft_prepare(const sound_sample *input, float * re, float * im,
const unsigned int *bitReverse);
static void fft_calculate(float * re, float * im,
const float *costable, const float *sintable );
static void fft_output(const float *re, const float *im, float *output);
static int reverseBits(unsigned int initial);
/*****************************************************************************
* These functions are the ones called externally
*****************************************************************************/
/*
* Initialisation routine - sets up tables and space to work in.
* Returns a pointer to internal state, to be used when performing calls.
* On error, returns NULL.
* The pointer should be freed when it is finished with, by fft_close().
*/
fft_state *visual_fft_init(void)
{
fft_state *p_state;
unsigned int i;
p_state = malloc( sizeof(*p_state) );
if(! p_state )
return NULL;
for(i = 0; i < FFT_BUFFER_SIZE; i++)
{
p_state->bitReverse[i] = reverseBits(i);
}
for(i = 0; i < FFT_BUFFER_SIZE / 2; i++)
{
float j = 2 * PI * i / FFT_BUFFER_SIZE;
p_state->costable[i] = cos(j);
p_state->sintable[i] = sin(j);
}
return p_state;
}
/*
* Do all the steps of the FFT, taking as input sound data (as described in
* sound.h) and returning the intensities of each frequency as floats in the
* range 0 to ((FFT_BUFFER_SIZE / 2) * 32768) ^ 2
*
* The input array is assumed to have FFT_BUFFER_SIZE elements,
* and the output array is assumed to have (FFT_BUFFER_SIZE / 2 + 1) elements.
* state is a (non-NULL) pointer returned by visual_fft_init.
*/
void fft_perform(const sound_sample *input, float *output, fft_state *state) {
/* Convert data from sound format to be ready for FFT */
fft_prepare(input, state->real, state->imag, state->bitReverse );
/* Do the actual FFT */
fft_calculate(state->real, state->imag, state->costable, state->sintable);
/* Convert the FFT output into intensities */
fft_output(state->real, state->imag, output);
}
/*
* Free the state.
*/
void fft_close(fft_state *state) {
free( state );
}
/*****************************************************************************
* These functions are called from the other ones
*****************************************************************************/
/*
* Prepare data to perform an FFT on
*/
static void fft_prepare( const sound_sample *input, float * re, float * im,
const unsigned int *bitReverse ) {
unsigned int i;
float *p_real = re;
float *p_imag = im;
/* Get input, in reverse bit order */
for(i = 0; i < FFT_BUFFER_SIZE; i++)
{
*p_real++ = input[bitReverse[i]];
*p_imag++ = 0;
}
}
/*
* Take result of an FFT and calculate the intensities of each frequency
* Note: only produces half as many data points as the input had.
*/
static void fft_output(const float * re, const float * im, float *output)
{
float *p_output = output;
const float *p_real = re;
const float *p_imag = im;
float *p_end = output + FFT_BUFFER_SIZE / 2;
while(p_output <= p_end)
{
*p_output = (*p_real * *p_real) + (*p_imag * *p_imag);
p_output++; p_real++; p_imag++;
}
/* Do divisions to keep the constant and highest frequency terms in scale
* with the other terms. */
*output /= 4;
*p_end /= 4;
}
/*
* Actually perform the FFT
*/
static void fft_calculate(float * re, float * im, const float *costable, const float *sintable )
{
unsigned int i, j, k;
unsigned int exchanges;
float fact_real, fact_imag;
float tmp_real, tmp_imag;
unsigned int factfact;
/* Set up some variables to reduce calculation in the loops */
exchanges = 1;
factfact = FFT_BUFFER_SIZE / 2;
/* Loop through the divide and conquer steps */
for(i = FFT_BUFFER_SIZE_LOG; i != 0; i--) {
/* In this step, we have 2 ^ (i - 1) exchange groups, each with
* 2 ^ (FFT_BUFFER_SIZE_LOG - i) exchanges
*/
/* Loop through the exchanges in a group */
for(j = 0; j != exchanges; j++) {
/* Work out factor for this exchange
* factor ^ (exchanges) = -1
* So, real = cos(j * PI / exchanges),
* imag = sin(j * PI / exchanges)
*/
fact_real = costable[j * factfact];
fact_imag = sintable[j * factfact];
/* Loop through all the exchange groups */
for(k = j; k < FFT_BUFFER_SIZE; k += exchanges << 1) {
int k1 = k + exchanges;
tmp_real = fact_real * re[k1] - fact_imag * im[k1];
tmp_imag = fact_real * im[k1] + fact_imag * re[k1];
re[k1] = re[k] - tmp_real;
im[k1] = im[k] - tmp_imag;
re[k] += tmp_real;
im[k] += tmp_imag;
}
}
exchanges <<= 1;
factfact >>= 1;
}
}
static int reverseBits(unsigned int initial)
{
unsigned int reversed = 0, loop;
for(loop = 0; loop < FFT_BUFFER_SIZE_LOG; loop++) {
reversed <<= 1;
reversed += (initial & 1);
initial >>= 1;
}
return reversed;
}
|