File: itkMultiScaleHessianBasedMeasureImageFilter.txx

package info (click to toggle)
vmtk 1.0.1-1
  • links: PTS, VCS
  • area: non-free
  • in suites: wheezy
  • size: 8,612 kB
  • sloc: cpp: 79,872; ansic: 31,817; python: 18,860; perl: 381; makefile: 118; sh: 15; tcl: 1
file content (407 lines) | stat: -rw-r--r-- 12,460 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkMultiScaleHessianBasedMeasureImageFilter.txx,v $
  Language:  C++
  Date:      $Date: 2009-08-26 19:09:35 $
  Version:   $Revision: 1.13 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkMultiScaleHessianBasedMeasureImageFilter_txx
#define __itkMultiScaleHessianBasedMeasureImageFilter_txx

#include "itkMultiScaleHessianBasedMeasureImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "vnl/vnl_math.h"

namespace itk
{

/**
 * Constructor
 */
template <typename TInputImage,
          typename THessianImage,
          typename TOutputImage>
MultiScaleHessianBasedMeasureImageFilter
<TInputImage,THessianImage,TOutputImage>
::MultiScaleHessianBasedMeasureImageFilter()
{
  m_NonNegativeHessianBasedMeasure = true;

  m_SigmaMinimum = 0.2;
  m_SigmaMaximum = 2.0;

  m_NumberOfSigmaSteps = 10;
  m_SigmaStepMethod = Self::LogarithmicSigmaSteps;

  m_HessianFilter = HessianFilterType::New();
  m_HessianToMeasureFilter = NULL;

  //Instantiate Update buffer
  m_UpdateBuffer = UpdateBufferType::New();

  m_GenerateScalesOutput = false;
  m_GenerateHessianOutput = false;

  typename ScalesImageType::Pointer scalesImage = ScalesImageType::New();
  typename HessianImageType::Pointer hessianImage = HessianImageType::New();
  this->ProcessObject::SetNumberOfRequiredOutputs(3);
  this->ProcessObject::SetNthOutput(1,scalesImage.GetPointer());
  this->ProcessObject::SetNthOutput(2,hessianImage.GetPointer());
}

template <typename TInputImage,
          typename THessianImage,
          typename TOutputImage>
void
MultiScaleHessianBasedMeasureImageFilter
<TInputImage,THessianImage,TOutputImage>
::EnlargeOutputRequestedRegion (DataObject *output)
{
  // currently this filter can not stream so we must set the outputs
  // requested region to the largest
  output->SetRequestedRegionToLargestPossibleRegion();
}

template <typename TInputImage,
          typename THessianImage,
          typename TOutputImage>
typename MultiScaleHessianBasedMeasureImageFilter 
  <TInputImage,THessianImage,TOutputImage>::DataObjectPointer
MultiScaleHessianBasedMeasureImageFilter
<TInputImage,THessianImage,TOutputImage>
::MakeOutput(unsigned int idx)
{
  if (idx == 1)
    {
    return static_cast<DataObject*>(ScalesImageType::New().GetPointer());
    }
  if (idx == 2)
    {
    return static_cast<DataObject*>(HessianImageType::New().GetPointer());
    }
  return Superclass::MakeOutput(idx);
}

template <typename TInputImage,
          typename THessianImage,
          typename TOutputImage>
void
MultiScaleHessianBasedMeasureImageFilter
<TInputImage,THessianImage,TOutputImage>
::AllocateUpdateBuffer()
{
  /* The update buffer looks just like the output and holds the best response
     in the  objectness measure */

  typename TOutputImage::Pointer output = this->GetOutput();

  // this copies meta data describing the output such as origin,
  // spacing and the largest region
  m_UpdateBuffer->CopyInformation(output);

  m_UpdateBuffer->SetRequestedRegion(output->GetRequestedRegion());
  m_UpdateBuffer->SetBufferedRegion(output->GetBufferedRegion());
  m_UpdateBuffer->Allocate();

  // Update buffer is used for > comparisons so make it really really small,
  // just to be sure. Thanks to Hauke Heibel.
  if (m_NonNegativeHessianBasedMeasure)
    {
    m_UpdateBuffer->FillBuffer( itk::NumericTraits< BufferValueType >::Zero );
    }
  else
    {
    m_UpdateBuffer->FillBuffer( itk::NumericTraits< BufferValueType >::NonpositiveMin() );
    }
}

template <typename TInputImage,
          typename THessianImage,
          typename TOutputImage>
void
MultiScaleHessianBasedMeasureImageFilter
<TInputImage,THessianImage,TOutputImage>
::GenerateData()
{
  // TODO: Move the allocation to a derived AllocateOutputs method
  // Allocate the output
  this->GetOutput()->SetBufferedRegion(this->GetOutput()->GetRequestedRegion());
  this->GetOutput()->Allocate();

  if( m_HessianToMeasureFilter.IsNull() )
    {
    itkExceptionMacro( " HessianToMeasure filter is not set. Use SetHessianToMeasureFilter() " );
    }

  if (m_GenerateScalesOutput)
    {
    typename ScalesImageType::Pointer scalesImage = 
              dynamic_cast<ScalesImageType*>(this->ProcessObject::GetOutput(1));

    scalesImage->SetBufferedRegion(scalesImage->GetRequestedRegion());
    scalesImage->Allocate();
    scalesImage->FillBuffer(0);
    }

  if (m_GenerateHessianOutput)
    {
    typename HessianImageType::Pointer hessianImage = 
      dynamic_cast<HessianImageType*>(this->ProcessObject::GetOutput(2));

    hessianImage->SetBufferedRegion(hessianImage->GetRequestedRegion());
    hessianImage->Allocate();
    // SymmetricSecondRankTensor is already filled with zero elements at construction. 
    // No strict need of filling the buffer, but we do it explicitly here to make sure.
    typename HessianImageType::PixelType zeroTensor(0.0);
    hessianImage->FillBuffer(zeroTensor);
    }

  // Allocate the buffer
  AllocateUpdateBuffer();

  typename InputImageType::ConstPointer input = this->GetInput();

  this->m_HessianFilter->SetInput(input);

  this->m_HessianFilter->SetNormalizeAcrossScale(true);

  double sigma = m_SigmaMinimum;

  int scaleLevel = 1;

  while (sigma <= m_SigmaMaximum)
    {
    if ( m_NumberOfSigmaSteps == 0 )
      {
      break;
      }

    itkDebugMacro ( << "Computing measure for scale with sigma = " << sigma );

    m_HessianFilter->SetSigma( sigma );

    m_HessianToMeasureFilter->SetInput ( m_HessianFilter->GetOutput() );

    m_HessianToMeasureFilter->Update();

    this->UpdateMaximumResponse(sigma);

    sigma  = this->ComputeSigmaValue( scaleLevel );

    scaleLevel++;

    if ( m_NumberOfSigmaSteps == 1 )
      {
      break;
      }
    }

  // Write out the best response to the output image
  // we can assume that the meta-data should match between these two
  // image, therefore we iterate over the desired output region
  OutputRegionType outputRegion = this->GetOutput()->GetBufferedRegion();
  ImageRegionIterator<UpdateBufferType> it( m_UpdateBuffer, outputRegion );
  it.GoToBegin();

  ImageRegionIterator<TOutputImage> oit( this->GetOutput(), outputRegion );
  oit.GoToBegin();

  while(!oit.IsAtEnd())
    {
    oit.Value() = static_cast< OutputPixelType >( it.Get() );
    ++oit;
    ++it;
    }

  // Release data from the update buffer.
  m_UpdateBuffer->ReleaseData();
}

template <typename TInputImage,
          typename THessianImage,
          typename TOutputImage>
void
MultiScaleHessianBasedMeasureImageFilter
<TInputImage,THessianImage,TOutputImage>
::UpdateMaximumResponse(double sigma)
{
  // the meta-data should match between these images, therefore we
  // iterate over the desired output region 
  OutputRegionType outputRegion = this->GetOutput()->GetBufferedRegion();
  ImageRegionIterator<UpdateBufferType> oit( m_UpdateBuffer, outputRegion );

  typename ScalesImageType::Pointer scalesImage = static_cast<ScalesImageType*>(this->ProcessObject::GetOutput(1));
  ImageRegionIterator<ScalesImageType> osit;

  typename HessianImageType::Pointer hessianImage = static_cast<HessianImageType*>(this->ProcessObject::GetOutput(2));
  ImageRegionIterator<HessianImageType> ohit;

  oit.GoToBegin();
  if (m_GenerateScalesOutput)
    {
    osit = ImageRegionIterator<ScalesImageType> ( scalesImage, outputRegion );
    osit.GoToBegin();
    }
  if (m_GenerateHessianOutput)
    {
    ohit = ImageRegionIterator<HessianImageType> ( hessianImage, outputRegion );
    ohit.GoToBegin();
    }

  typedef typename HessianToMeasureFilterType::OutputImageType HessianToMeasureOutputImageType;

  ImageRegionIterator<HessianToMeasureOutputImageType> it( m_HessianToMeasureFilter->GetOutput(), outputRegion );
  ImageRegionIterator<HessianImageType> hit( m_HessianFilter->GetOutput(), outputRegion );

  it.GoToBegin();
  hit.GoToBegin();

  while(!oit.IsAtEnd())
    {
    if( oit.Value() < it.Value() )
      {
      oit.Value() = it.Value();
      if (m_GenerateScalesOutput)
        {
        osit.Value() = static_cast< ScalesPixelType >( sigma );
        }
      if (m_GenerateHessianOutput)
        {
        ohit.Value() = hit.Value();
        }
      }
    ++oit;
    ++it;
    if (m_GenerateScalesOutput)
      {
      ++osit;
      }
    if (m_GenerateHessianOutput)
      {
      ++ohit;
      ++hit;
      }
    }
}

template <typename TInputImage,
          typename THessianImage,
          typename TOutputImage>
double
MultiScaleHessianBasedMeasureImageFilter
<TInputImage,THessianImage,TOutputImage>
::ComputeSigmaValue(int scaleLevel)
{
  double sigmaValue;

  if (m_NumberOfSigmaSteps < 2)
    {
    return m_SigmaMinimum;
    }

  switch (m_SigmaStepMethod)
    {
    case Self::EquispacedSigmaSteps:
      {
      const double stepSize = vnl_math_max(1e-10, ( m_SigmaMaximum - m_SigmaMinimum ) / (m_NumberOfSigmaSteps - 1));
      sigmaValue = m_SigmaMinimum + stepSize * scaleLevel;
      break;
      }
    case Self::LogarithmicSigmaSteps:
      {
      const double stepSize = vnl_math_max(1e-10, ( vcl_log(m_SigmaMaximum) - vcl_log(m_SigmaMinimum) ) / (m_NumberOfSigmaSteps - 1));
      sigmaValue = vcl_exp( vcl_log (m_SigmaMinimum) + stepSize * scaleLevel);
      break;
      }
    default:
      throw ExceptionObject(__FILE__, __LINE__,"Invalid SigmaStepMethod.",ITK_LOCATION);
      break;
    }

  return sigmaValue;
}

template <typename TInputImage,
          typename THessianImage,
          typename TOutputImage>
void 
MultiScaleHessianBasedMeasureImageFilter
<TInputImage,THessianImage,TOutputImage>
::SetSigmaStepMethodToEquispaced()
{ 
  this->SetSigmaStepMethod(Self::EquispacedSigmaSteps);
}

template <typename TInputImage,
          typename THessianImage,
          typename TOutputImage>
void 
MultiScaleHessianBasedMeasureImageFilter
<TInputImage,THessianImage,TOutputImage>
::SetSigmaStepMethodToLogarithmic()
{
  this->SetSigmaStepMethod(Self::LogarithmicSigmaSteps);
}

/** Get the image containing the Hessian at which each pixel gave the
 * best response */
template <typename TInputImage,
          typename THessianImage,
          typename TOutputImage>
const 
typename MultiScaleHessianBasedMeasureImageFilter<TInputImage,THessianImage,TOutputImage>::HessianImageType * 
MultiScaleHessianBasedMeasureImageFilter
<TInputImage,THessianImage,TOutputImage>
::GetHessianOutput() const
{
  return static_cast<const HessianImageType*>(this->ProcessObject::GetOutput(2));
}

/** Get the image containing the scales at which each pixel gave the
 * best response */
template <typename TInputImage,
          typename THessianImage,
          typename TOutputImage>
const 
typename MultiScaleHessianBasedMeasureImageFilter<TInputImage,THessianImage,TOutputImage>::ScalesImageType * 
MultiScaleHessianBasedMeasureImageFilter
<TInputImage,THessianImage,TOutputImage>
::GetScalesOutput() const
{
  return static_cast<const ScalesImageType*>(this->ProcessObject::GetOutput(1));
}

template <typename TInputImage,
          typename THessianImage,
          typename TOutputImage>
void
MultiScaleHessianBasedMeasureImageFilter
<TInputImage,THessianImage,TOutputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "SigmaMinimum:  " << m_SigmaMinimum << std::endl;
  os << indent << "SigmaMaximum:  " << m_SigmaMaximum  << std::endl;
  os << indent << "NumberOfSigmaSteps:  " << m_NumberOfSigmaSteps  << std::endl;
  os << indent << "SigmaStepMethod:  " << m_SigmaStepMethod  << std::endl;
  os << indent << "HessianToMeasureFilter: " << m_HessianToMeasureFilter << std::endl;
  os << indent << "NonNegativeHessianBasedMeasure:  " << m_NonNegativeHessianBasedMeasure << std::endl;
  os << indent << "GenerateScalesOutput: " << m_GenerateScalesOutput << std::endl;
  os << indent << "GenerateHessianOutput: " << m_GenerateHessianOutput << std::endl;
}


} // end namespace itk

#endif